Action Mechanism of Transfructosylation Catalyzed by Microbacterium laevaniformans Levansucrase

  • KIM, MIN-JEONG (Department of Microbiology, Pusan National University) ;
  • PARK, HAE-EUN (Department of Microbiology, Pusan National University) ;
  • SUNG, HEE-KYUNG (Department of Microbiology, Pusan National University) ;
  • PARK, TACK-HYUN (Department of Microbiology, Pusan National University) ;
  • CHA, JAE-HO (Department of Microbiology, Pusan National University)
  • Published : 2005.02.01

Abstract

Microbacterium laevaniformans levansucrase synthesized various hetero-oligosaccharides by transferring fructosyl residue from sucrose to various saccharides as acceptors. The acceptor specificity test showed that reducing saccharides were more favorable acceptors than nonreducing saccharides. The transfructosylated product, fructosyl galactose, was produced in the presence of D-galactose as an acceptor. The chemical structure of the resulting fructosyl galactose was analyzed by yeast invertase and NMR, and identified as O-$\alpha$-D-galactosyl-(1${\to}$2)-$\beta$-D-fructofuranoside. These results indicate that the main transfructosylation activity of the enzyme is to make nonreducing transferred products via a transfer of fructosyl residue to acceptor molecules having reducing group. When nonreducing sugars, such as methyl $\alpha$-D-glucoside and methyl $\alpha$-D-galactoside, were used as an acceptor, the transfer product was also formed in spite of the reducing group blocked with methyl group. The fact that no transfer product was formed with sugar alcohols as acceptors was suggested to be due to marked conformational difference of acceptors.

Keywords

References

  1. Ananthalakshmy, V. K and P. Gunasekaran. 1999. Overproduction of levan in Zymomonas mobilis by using cloned sacB gene. Enzyme Microb. Technol. 25: 109- 115 https://doi.org/10.1016/S0141-0229(99)00018-6
  2. Cairns, A. J. 1993. Evidence for the de novo synthesis of fructan by enzymes from higher plants; a reappraisal of the SST/FFT model. New Phytologist 123: 15- 24 https://doi.org/10.1111/j.1469-8137.1993.tb04526.x
  3. Charnbert, R., G. Treboul, and R. Dedonder. 1974. Kinetic studies of levan sucrase of Bacillus subtilis. Eur. J. Biochem. 41: 285- 300 https://doi.org/10.1111/j.1432-1033.1974.tb03269.x
  4. Chambert, R. and G. Gonzy1-Treboul. 1976. Levansucrase of Bacillus subtilis: Kinetic and thermodynamic aspects of transfructosylation processes. Eur. J. Biochem. 62: 55- 64 https://doi.org/10.1111/j.1432-1033.1976.tb10097.x
  5. Fujita, K., N. Kuwahara, T. Tanimoto, K. Koizumi, M. Iizuka, N. Munamiura, K. Furuichi, and S. Kitahata. 1994. Chemical structures of hetero-oligosaccharides produced by Arthrobacter sp. K-1 $\beta$-fructofuranosidase. Biosci. Biotech. Biochem. 58: 239- 243 https://doi.org/10.1271/bbb.58.239
  6. Fujita, K., K. Hara, H. Hashimoto, and S. Kitahata. 1990. Purification and some properties of $\beta-fructofuranosidase$ I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 913- 919
  7. Hendry, G. A. F. and R. K. Wallace. 1993. The origin, distribution and evolutionary significance of fructans, pp. 119- 139. In: Suzuki M, Chatterton N. J. (eds.). Science and Technology of Fructans. Boca Raton: CRC Press
  8. Kim, H., H.-E. Park, M.-J. Kim, H. G. Lee, J.-Y. Yang, and J. Cha. 2003. Enzymatic characterization of a recombinant levan sucrase from Rahnella aquatilis ATCC 15552. J. Microbiol. Biotechnol. 13: 230- 235
  9. Kim, M. G., C. H. Kim, J. S. Lee, K. B. Song, and S. K. Rhee. 2000. Synthesis of methyl $\beta-D-fructoside$ catalyzed by levan sucrase from Rahnella aquatilis. Enz: Microb. Tech. 27: 646- 651 https://doi.org/10.1016/S0141-0229(00)00267-2
  10. Meng, G. and K. Futterer. 2003. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat. Struct. Biol. 10: 935- 941 https://doi.org/10.1038/nsb974
  11. Ohtsuka, K., S. Hino, T. Fukushima, O. Ozawa, T. Kanematsu, and T. Uchida. 1992. Characterization of levansucrase from Rahnella aquatilis JCM-1683. Biosci. Biotechnol. Biochem. 56: 1373- 1377 https://doi.org/10.1271/bbb.56.1373
  12. Park, J. M., S. Y. Kwon, K. B. Song, J. W. Kwak, S. B. Lee, Y. W. Nam, J. S. Shin, Y. I. Park, S. K. Rhee, and K. H. Paek. 1999. Transgenic tobacco plants expressing the bacterial levansucrase gene show enhanced tolerance to osmotic stress. J. Microbiol. Biotechnol. 9: 213- 218
  13. Park, H.-E., N. H. Park, M.-J. Kim, T. H. Lee, H. G. Lee, J.-Y. Yang, and J. Cha. 2003. Enzymatic synthesis offructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme Microb. Tech. 32: 820- 827 https://doi.org/10.1016/S0141-0229(03)00062-0
  14. Pollock, C. J. and A. J. Cairns. 1991. Fructan metabolism in grasses and cereals. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 77- 101 https://doi.org/10.1146/annurev.pp.42.060191.000453
  15. Song, E. K., H. Kim, H. K. Sung, and J. Cha. 2002. Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953. Gene 291: 45- 55 https://doi.org/10.1016/S0378-1119(02)00630-3
  16. Tanaka, T., S. Yamamoto, and T. Yamamoto. 1981. Structures of hetero-oligosaccharides synthesized by levansucrase. J. Biochem. 90: 521-526 https://doi.org/10.1093/oxfordjournals.jbchem.a133500
  17. Vijn. I. and S. Smeekens. 1999. Fructan: More than a reserve carbohydrate? Plant Physiol. 120: 351- 359 https://doi.org/10.1104/pp.120.2.351
  18. Yanase, H., M. Iwata, R. Nakahigashi, K. Kita, and K. Tonomura. 1992. Purification, crystallization, and properties of the extracellular levan sucrase from Zymomonas mobilis. Biosci. Biotechnol. Biochem. 56: 1335- 1337 https://doi.org/10.1271/bbb.56.1335