On-Line Monitoring of Low Biochemical Oxygen Demand Through Continuous Operation of a Mediator-Less Microbial Fuel Cell

  • MOON, HYUN-SOO (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • CHANG, IN-SEO (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • JANG, JAE-KYUNG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • KIM, KYUNG-SHIK (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • LEE, JI-YOUNG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • LOVITT, ROBERT W. (Center for Complex Fluids Processing, Multidisplinary Nanotechnology Center, School of Engineering, University of Wales Swansea) ;
  • KIM, BYUNG-HONG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
  • Published : 2005.02.01

Abstract

Abstract Oligotrophic microbial fuel cells (MFCs) were tested for the continuous monitoring of low biochemical oxygen demand (BOD) by using artificial wastewater, containing glucose and glutamate, as check solution. Ten times diluted trace mineral solution was used to minimize the background current level, which is generated from the oxidation of nitrilotriacetate used as a chelating agent. The feeding rate of 0.53 ml/min could increase the sensitivity from 0.16 to 0.43 ${\mu}$A/(mg BOD/l) at 0.15 ml/min. The dynamic linear range of the calibration curve was between 2.0 and 10.0 mg BOD/l, and the response time to the change of 2 mg BOD/l was about 60 min. The current signal from an oligotroph-type MFCs increased with the increase in salts concentration, and the salt effect could be eliminated by 50 mM phosphate buffer.

Keywords

References

  1. Bourgeois, W., J. E. Burgess, and R. M. Stuetz. 2001. Online monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 76: 337- 348 https://doi.org/10.1002/jctb.393
  2. Buerk, D. G. 1993. Biosensors: Theory and Applications, pp. 1-18. Technomic, Lancaster, U.K
  3. Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using a microbial fuel cell type biosensor Biosens. Bioelectron. 19: 607- 613 https://doi.org/10.1016/S0956-5663(03)00272-0
  4. Chee, G. J., Y. Nomura, and I. Karube. 1999. Biosensor for the estimation of low biochemical oxygen demand. Anal. Chem. Acta 379: 185-191 https://doi.org/10.1016/S0003-2670(98)00680-1
  5. Chee, G. J., Y. Nomura, K. Ikebukuro, and I. Karube. 2000. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens. Bioelectron. 15: 371-376 https://doi.org/10.1016/S0956-5663(00)00093-2
  6. Diekert, G. 1991. The acetogenic bacteria, pp. 517-533. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes. 2nd Ed. Springer-Verlag, New York, U.S.A
  7. Enfors, S. O. and N. Molin. 1973. Biodegradation of nitrilotriacetate (NTA) by bacteria-I. Isolation of bacteria able to grow anaerobically with NTA as a sole carbon source. Wat. Res. 7: 881-888 https://doi.org/10.1016/0043-1354(73)90104-8
  8. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327- 334 https://doi.org/10.1016/S0956-5663(02)00110-0
  9. Gunatilaka, A. and J. Dreher. 2003. Use of real-time data in environmental monitoring: Current practice. Wat. Sci. Tech. 47: 53-61
  10. Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361 https://doi.org/10.1023/A:1024984521699
  11. Karube, I., T. Matsunga, S. Mitsuda, and S. Suzuki. 1977. Microbial electrode BOD sensors. Biotechnol. Bioeng, 19: 1535-1547 https://doi.org/10.1002/bit.260191010
  12. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, J. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 https://doi.org/10.1007/s00253-003-1412-6
  13. Kim, B. H., J. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545 https://doi.org/10.1023/A:1022891231369
  14. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365- 367
  15. Kim, H. J., H. S. Park, M. S. Hyun, J. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152 https://doi.org/10.1016/S0141-0229(01)00478-1
  16. Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 5: 640- 643 https://doi.org/10.1039/b304583h
  17. Liu, J. and B. Mattiasson. 2002. Microbial BOD sensors for wastewater analysis. Wat. Res. 36: 3786- 3802 https://doi.org/10.1016/S0043-1354(02)00101-X
  18. Moon, H., I. S. Chang, K. H. Kang, J. K. Jang, and B. H. Kim. 2004. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 26: 1717- 1721 https://doi.org/10.1007/s10529-004-3743-5
  19. Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediator-less microbial fuel cell with graphite or platinum-coated graphite as the cathode. J. Microbiol. Biotechnol. 14: 324- 329
  20. Vanrolleghem, P. A. and D. S. Lee. 2003. On-line monitoring equipment for wastewater treatment processes: State of art. Wat. Sci. Tech. 47: 1- 34
  21. Yang, Z., H. Suzuki, S. Sasaki, and I. Karube. 1996. Disposable sensor for biochemical oxygen demand. Appl. Microbiol. Biotechnol. 46: 10- 14 https://doi.org/10.1007/s002530050776