DOI QR코드

DOI QR Code

Fabrication and Mechanical Properties of Dense WSi2-20vol.%SiC Composite by High-Frequency Induction-Heated Combustion Synthesis

고주파유도가열 연소합성에 의한 치밀한 WSi2-20vol.%SiC 복합재료 제조 및 기계적 특성

  • Oh, Dong-Young (Department of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Kim, Hwan-Cheol (Department of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University) ;
  • Lee, Sang-Kwon (Eltek. Ltd) ;
  • Shon, In-Jin (Department of Advanced Materials Engineering, Research Center of Industrial Technology, Chonbuk National University)
  • 오동영 (전북대학교 공과대학 신소재공학부, 공학연구원 공업기술연구센터) ;
  • 김환철 (전북대학교 공과대학 신소재공학부, 공학연구원 공업기술연구센터) ;
  • 이상권 ((주)엘텍) ;
  • 손인진 (전북대학교 공과대학 신소재공학부, 공학연구원 공업기술연구센터)
  • Published : 2005.02.01

Abstract

Dense $WSi_2$-20vol.%SiC composite was synthesized by high-frequency induction-heated combustion synthesis(HFIHCS) method within 2 minutes in one step from elemental powder mixture of W, Si and C. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. Highly dense $WSi_2$-20vol.%SiC with relative density of up to 97% was produced under simultaneous application of 60MPa pressure and the induced current. The average grain size of $WSi_2$ was about $5.2{\mu}m$. The hardness and fracture toughness values obtained were 1700kg/$mm^2$ and $4.4MPa{\cdot}m^{1/2}$, respectively.

Keywords

References

  1. L. F. Mattesis: Physi. Rev. B, 45 (1992) 3252 https://doi.org/10.1103/PhysRevB.45.3252
  2. G. Sauthoff: Intermetallics, VCH Publishers, New York (1995) 115
  3. T. Yamaguchi and J. Nakata: J. Appl. Physi., 81 (1997) 2219 https://doi.org/10.1063/1.364272
  4. J. H. Liang and D. S. Chao: Surf. Coat. Technol., 140 (2001) 116 https://doi.org/10.1016/S0257-8972(01)01034-9
  5. Y. Ohya, M. J. Hoffmann and G. Petzow: J. Mater. Sci. Lett., 12 (1993) 149 https://doi.org/10.1007/BF00819942
  6. Y. Ohya, M. J. Hoffmann and G. Petzow: J. Am. Ceram. Soc., 75 (1992) 2479 https://doi.org/10.1111/j.1151-2916.1992.tb05600.x
  7. M. Panneerselvam, A. Agrawal and K. J. Rao: Mater. Sci. Eng., A. 356 (2003) 267 https://doi.org/10.1016/S0921-5093(03)00140-0
  8. S. K. Bhaumik, C. Divakar, A. K. Singh and G. S. Upadhyaya: Mater. Sci. Eng. A., 279 (2000) 275 https://doi.org/10.1016/S0921-5093(99)00217-8
  9. I. J. Shon and Z. A. Munir: Mater. Sci. Eng. A., 202 (1995) 256 https://doi.org/10.1016/0921-5093(95)09800-3
  10. I. J. Shon and Z. A. Munir: J. Mater. Sci., 32 (1997) 3243 https://doi.org/10.1023/A:1018671222266
  11. I. J. Shon, H. C. Kim and D. H. Rho: Kor. J. Ceram., 5 (1999) 148
  12. I. J. Shon, H. C. Kim and D. H. Rho: Met. Mater. Int., 5 (1999) 49 https://doi.org/10.1007/BF03026004
  13. I. J. Shon, H. C. Kim, D. H. Rho and Z. A. Munir: Mater. Sci. Eng. A., 269 (1999) 129 https://doi.org/10.1016/S0921-5093(99)00131-8
  14. I. J. Shon, D. H. Rho, H. C. Kim and Z. A. Munir: J. Alloys & Compounds, 322 (2001) 120 https://doi.org/10.1016/S0925-8388(01)01167-7
  15. H. C. Kim, I. J. Shon and C. D. Park: J. Korean Soc. Heat Treatment, 14 (2001) 1 (Korean)
  16. I. J. Shon, D. H. Rho and H. C. Kim: Met. Mater. Int., 6 (2000) 533 https://doi.org/10.1007/BF03028095
  17. R. Mitra, Y. R. Mahajan, N. E. Prasad, W. A. Chiou and C. Ganguly: Key. Eng. Mater., 108-110 (1995) 11 https://doi.org/10.4028/www.scientific.net/KEM.108-110.11
  18. Z. Houan, C. Pin, W. Mengjun and L. Xinyu: Rare Met., 21 (2002) 304
  19. P. J. Meschter: Metall. Trans. A., 23 (1992) 1763 https://doi.org/10.1007/BF02804369
  20. J. K. Yoon, K. H. Lee, G. H. Kim, J. H. Han, J. M. Doh and K. T. Hong: Mater. Trans., 45 (2004) 2435 https://doi.org/10.2320/matertrans.45.2435
  21. A. K. Bhattacharya and J. J. Petrovic: J. Am. Ceram. Soc., 74 (1991) 2700 https://doi.org/10.1111/j.1151-2916.1991.tb06828.x
  22. Y. Luo, S. Li, W. Pan and L. Li: Mater. Lett., 58 (2004) 150 https://doi.org/10.1016/S0167-577X(03)00434-8
  23. Z. A. Munir: Am. Ceram. Soc. Bull., 67 (1988) 342
  24. Z. A. Munir and U. Anselmi-Tamburini: Mater. Sci. Reports, 3 (1989) 277 https://doi.org/10.1016/0920-2307(89)90001-7
  25. H. C. Kim, D. Y. Oh and I. J. Shon: Int. J. Refract. Met. Hard Mater., 22 (2004) 41 https://doi.org/10.1016/j.ijrmhm.2003.12.002
  26. H. C. Kim, D. Y. Oh and I. J. Shon: Int. J. Refract. Met. Hard Mater., 22 (2004) 197 https://doi.org/10.1016/j.ijrmhm.2004.06.006
  27. D. Y. Oh, H. C. Kim, J. K. Yoon and I. J. Shon: J. Alloys&Compounds, 386 (2005) 270
  28. J. M. Choi, K. H. Lee, J. H. Ryu, W. S. Cho and S. W. Choi: J. Kor. Ceram. Soc., 36 (1999) 451
  29. ASTM E112-96e2
  30. I. J. Shon, D. H. Rho, H. C. Kim and Z. A. Munir: J. Alloys&Compounds, 327 (2001) 66
  31. N. Koichi: Ceramics 20 (1985) 1218
  32. D. Y. Oh, H. C. Kim, J. K. Yoon and I. J. Shon: Mater. Sci. Eng. A, in press (2005)
  33. K. Yamaguchi, M. Yoshinaka, K. Hirota and O. Yamaguchi: Mater. Res. Bull., 30 (1995) 953 https://doi.org/10.1016/0025-5408(95)00089-5