Extremely Low Frequency Magnetic Fields Modulate Bicuculline-Induced-Convulsion in Rats

  • Jeong, Ji-Hoon (Department of Pharmacology, College of Medicine, Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Choi, Kyung-Bum (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Choi, Hee-Jung (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Song, Hyun-Ju (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Min, Young-Sil (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Ko, Sung-Kwon (Korea Ginseng Institute, Chung Ang University) ;
  • Im, Byung-Ok (Korea Ginseng Institute, Chung Ang University) ;
  • Sohn, Uy-Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
  • Published : 2005.01.01

Abstract

The effect of extremely low frequency (ELF,60Hz) magnetic fields (MFs) on convulsions was investigated in rats. We determined the onset arid duration of convulsions induced by bicuculline alone or by co-exposure to MFs and bicuculline. In addition, we measured the GABA concentrations in the rat brains using HPLC-ECD. MFs strengthened the convulsion induced by bicuculline (0.3, 1, and 3${\mu}g$, I.c.v.), with a shortening of the onset time, but lengthening of the duration time. Co-exposure to MFs and bicuculline decreased the GABA levels in the cortex, hippocampus and hypothalamus, whereas MFs alone reduced the level of GABA only in the hippocampus. These results suggest that the exposure to MFs may modulate bicuculline-induced convulsions due to GABA neurotransmissions in rat brains.

Keywords

References

  1. Adey, W. R., Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev., 61, 435-514 (1981) https://doi.org/10.1152/physrev.1981.61.2.435
  2. Bormann, J., Electrophysiology of $GABA_{A}$ and $GABA_{B}$ receptor subtypes. Trends Neurosci., 11, 112-116 (1988) https://doi.org/10.1016/0166-2236(88)90156-7
  3. Bowery, N. G.., $GABA_{B}$ receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci., 10, 401- 407 (1989) https://doi.org/10.1016/0165-6147(89)90188-0
  4. Costa, E. and Guidotti, A., Molecular mechanisms in the receptor action of benzodiazepines. Annu. Rev. Pharmacol., 19, 531-545 (1979) https://doi.org/10.1146/annurev.pa.19.040179.002531
  5. DeFeudis, F. V., GABA-receptors in the vertebrate nervous system. Prog. Neurobiol., 9, 123-145 (1977) https://doi.org/10.1016/0301-0082(77)90015-6
  6. Enna, S. J., and Karbon, E. W., GABA receptors: an overview, In Olson R. W., and Venter J. C. (Eds.). Benzodiazepine/ GABA Receptors and Chloride Channels: Structural and Functional Properties. Liss, New York, pp. 41, (1986)
  7. Frey, A. H., Electromagnetic field interactions with biological systems. FASEB J., 7, 272-281 (1993) https://doi.org/10.1096/fasebj.7.2.8440406
  8. Gould, J. L., Magnetic field sensitivity in animals. Annu. Rev. Physiol., 46, 585-598. (1984) https://doi.org/10.1146/annurev.ph.46.030184.003101
  9. Hosli, L. and Hosli, E., Action and uptake of neurotransmitters in CNS tissue culture. Rev. Physiol. Biochem. Pharmacol., 81, 135-188 (1978) https://doi.org/10.1007/BFb0034093
  10. Jeong, J. H., Choi, K. B., Yi, B. C., Chun, C. H., Sung, K. Y., Sung, J. Y., Kim, J. H., Gimm, Y. M., Huh, I. H., and Sohn, U. D., Effects of extremely low frequency magnetic fields on pain thresholds in mice: roles of melatonin and opioids. J. Auton. Pharmacol., 20, 259-264 (2000) https://doi.org/10.1046/j.1365-2680.2000.00189.x
  11. Johnston, G.. A., Neuropharmacology of amino acid inhibitory transmitters. Rev. harmacol. Toxicol.,18, 269-289 (1978) https://doi.org/10.1146/annurev.pa.18.040178.001413
  12. Kim, J., Baik, K. Y., Lee, B. C., Kang, S. Y., Shin, S. H., and Soh, K. S., Extremely low frequency magnetic field effects on premorbid behaviors produced by cocaine in the mouse. Bioelectromagnetics, 25, 245-250 (2004) https://doi.org/10.1002/bem.10193
  13. Matsumoto, R., GABA receptors: are cellular differences reflected in function. Brain Res. Rev., 14, 203-225 (1989) https://doi.org/10.1016/0165-0173(89)90001-5
  14. Moshe, S. L., Mechanisms of action of anticonvulsant agents. Neurology, 55, S32-40 (2000).;
  15. Paxinos, G. and Watson, C., The rat brain in stereotaxic coordinates. 2nd edn., Academic Press, San Diego (1986)
  16. Piredda, S., Lim, C. R., and Gale, K., Intracerebral site of convulsant action of bicuculline. Life Sci., 36, 1295-1298 (1985) https://doi.org/10.1016/0024-3205(85)90275-9
  17. Rowley, H. L., Martin, K. F., and Marsden, C. A., Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation. J. Neurosci. Meth., 57, 93-99 (1995) https://doi.org/10.1016/0165-0270(94)00132-Z
  18. Scheibel, A. B., Morphological correlates of epilepsy: cells in the hippocampus. Adv. Neurol., 27, 49-61 (1980)
  19. Sperber, E. F., Wurpel, J. N., Zhao, D. Y., and Moshe, S. L., Evidence for the involvement of nigral $GABA_{A}$ receptors in seizures of adult rats. Brain Res., 480, 378-382 (1989) https://doi.org/10.1016/0006-8993(89)90211-4
  20. Tallman, J. and Gallaher, D., The GABAergic system: a locus of benzodiazepine action. Annu. Rev. Neurosci., 8, 21-24 (1985) https://doi.org/10.1146/annurev.ne.08.030185.000321
  21. Tatsuo, M. A., Salgado, J. V., Yokoro, C. M., Duarte, I. D., and Francischi, J. N., Midazolam-induced hyperalgesia in rats: modulation via $GABA_{A}$ receptors at supraspinal level. Eur. J. Pharmacol., 370, 9-15 (1999) https://doi.org/10.1016/S0014-2999(99)00096-5
  22. WHO, Electromagnetic fields (300 Hz to 300 GHz). EHC 137, Geneva (1993)
  23. WHO, Magnetic fields, Environmental Health Criteria 69, Geneva (1987)
  24. WHO, Extremely low frequency (ELF) fields. EHC 35, Geneva (1984)