참고문헌
- Anderson, S. O., Sclerotization and tanning in cuticle. In Comparative Insect Physiology, Biochemistry, and Pharmacology, Vol. 3. Kerkut, G. A., Gilbert, L. I. (Eds.). Pergamon Press, Oxford, pp. 59-74, (1985)
- Bernard, P. and Berthon, J. Y., Resveratrol: an original mechanism on tyrosinase inhibition. Int. J. Cosmet. Sci., 22, 219-226 (2000) https://doi.org/10.1046/j.1467-2494.2000.00019.x
- Braughler, J. M., Chase, R. L., and Pregenzer, J. F., Oxidation of ferrous iron during peroxidation of lipid substrates. Biochim. Biophys. Acta, 921, 457-464 (1987) https://doi.org/10.1016/0005-2760(87)90072-5
- Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J., and McCall, J. M., Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J. Biol. Chem., 262, 10438-10440 (1987)
- Braughler, J. M., Philip, S., Barton, R. L., Chase, J. F., Pregenzer, E. J., Jacobsen, F. J., Van Doornik, J. M. T., Donald, E. A., and Gordon, L. B., Novel membrane localized iron chelators as inhibitors of iron-dependent lipid peroxidation. Biochem. Pharmacol., 37, 3853-3860 (1988) https://doi.org/10.1016/0006-2952(88)90066-4
- Connell, D. W. and Sutherland, M. D., A re-examination of gingerol, shogaol, and zingerone, the pungent principles of ginger (Zingiber officinale Roscoe). Aust. J. Chem., 22, 1033-1043 (1969) https://doi.org/10.1071/CH9691033
- CoSeteng, M. Y., and Lee, C. Y., Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. J. Food Sci., 52, 985-989 (1987) https://doi.org/10.1111/j.1365-2621.1987.tb14257.x
- De Bernardi, M., Vidari, G., and Vita-Finzi, P., Dehydrozingerone from Aframomum giganteum. Phytochemistry, 15, 1785- 1786 (1976) https://doi.org/10.1016/S0031-9422(00)97488-0
-
Denniff, P. and Whiting, D. A., Synthesis of (
$\pm$ )-[6]-gingerol (pungent principle of ginger) and relatives via directed aldol reactions. J. Chem. Soc., Chem. Commun., 712-713 (1976) https://doi.org/10.1039/c39760000712 - Fridovich, I., The biology of oxygen radicals. Science, 201, 875- 880 (1978) https://doi.org/10.1126/science.210504
- Gutteridge, J. M. C., Richmond, R., and Halliwell, B., Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem. J., 184, 469-472 (1979) https://doi.org/10.1042/bj1840469
- Halliwell, B., Murcia, M. A., Chirico, S., and Aruoma, O. I., Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr., 35, 7-20 (1995) https://doi.org/10.1080/10408399509527682
-
Huang, Y. C., Wu, B. N., Yeh, J. L., Chen, S. J., Liang, J. C., Lo, Y. C., and Chen, I. J., A new aspect of view in synthesizing new type
$\beta$ -adrenoceptor blockers with ancillary antioxidant activities. Bioorg. Med. Chem., 9, 1739-1746 (2001) https://doi.org/10.1016/S0968-0896(01)00067-0 - Kitagawa, S., Fujisawa, H., and Sakurai, H., Scavenging effects of dihydric and polyhydric phenols on superoxide anion radicals, studied by electron spin resonance spectrometry. Chem. Pharm. Bull., 40, 304-307 (1992) https://doi.org/10.1248/cpb.40.304
- Ko, F. N., Liao, C. H., Kuo, Y. H., and Lin, Y. L., Antioxidant properties of demethyldiisoeugenol. Biochim. Biophys. Acta, 1258, 145-152 (1995) https://doi.org/10.1016/0005-2760(95)00111-O
- Laranjinha, J., Almeida, L., and Madeira, V., Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation. Biochem. Pharmacol., 48, 487-494 (1994) https://doi.org/10.1016/0006-2952(94)90278-X
- Lee, C. Y., Kagan, V., Jaworski, A. W., and Brown, S., Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars. J. Agric. Food Chem., 38, 99-101 (1990) https://doi.org/10.1021/jf00091a019
- Maeda, K. and Fukuda, M., In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem., 42, 361-368 (1991)
- Mason, H. S. and Peterson, E. W., Melanoproteins. I. Reactions between enzyme-generated quinones and amino acids. Biochim. Biophys. Acta, 111, 134-146 (1965) https://doi.org/10.1016/0304-4165(65)90479-4
- Mellors, A. and Tappel, A. L., The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. J. Biol. Chem., 241, 4353-4356 (1966)
- Pomerantz, S. H., Separation, purification, and properties of two tyrosinases from Hamster Melanoma. J. Biol. Chem., 238, 2351-2357 (1963)
- Raper, H. S., The aerobic oxidases. Physiol. Rev., 8, 245-282 (1928) https://doi.org/10.1152/physrev.1928.8.2.245
- Sala, T. and Sargent, M. V., Depsidone synthesis. Part 14. The total synthesis of psoromic acid: isopropyl ethers as useful phenolic protective groups. J. Chem. Soc. Perkin Trans. 1, 2593-2598 (1979) https://doi.org/10.1039/p19790002593
- Sanchez-Ferrer, A., Rodriguez-Lopez, J. N., Garcia-Canovas, F., and Garcia-Carmona, F., Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta, 1247, 1-11 (1995) https://doi.org/10.1016/0167-4838(94)00204-T
- Scott, A. I., Interpretation of the ultraviolet spectra of natural products. Pergamon Press, New York, p. 119, (1964)
- Shirota, S., Miyazaki, K., Aiyama, R., Ichioka, M., and Yokokura, T., Tyrosinase inhibitors from crude drugs. Biol. Pharm. Bull., 17, 266-269 (1994) https://doi.org/10.1248/bpb.17.266
- Staprans, I., Pan, X. M., Miller, M., and Rapp, J. H., Effect of dietary lipid peroxides on metabolism of serum chylomicrons in rats. Am. J. Physiol., 264, G561-G568 (1993)
- Terao, J., Karasawa, H., Arai, H., Nagao, A., Suzuki, T., and Takama, K., Peroxyl radical scavenging activity of caffeic acid and its related phenolic compounds in solution. Biosci. Biotech. Biochem., 57, 1204-1205 (1993) https://doi.org/10.1271/bbb.57.1204