Potential Soil Loss Prediction for Land Resource Management in the Nakdong River Basin

토지자원관리를 위한 낙동강 유역의 잠재적 토양유실량 산정

  • Oh, Jeong-Hak (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Jung, Sung-Gwan (Department of Landscape Architecture, Kyungpook National University)
  • Published : 2005.06.25

Abstract

The purpose of this study is to analyze the potential soil loss and hazard zone by the Revised Universal Soil Loss Equation(RUSLE) for preservation and management of land resources which is the base of ecosystem, and to grasp the relationship between RUSLE factors in the Nakdong River Basin. All thematic maps used in RUSLE are constructed through GIS and spatial analysis method derived from digital topographic maps, detailed soil maps, land-cover maps, and mean annual precipitation of 30 years collected respectively from National Geographic Information Institute, National Institute of Agricultural Science and Technology, and Ministry of Environment. The slope length of LS-factor that takes much times by the study area's wideness was calculated automatically through AML(Arc Macro Language) program developed by Van Remortel et al.(2001, 2003). The results are as follows; First, according to the soil loss estimation by the RUSLE, it shows that approximately 82% of the study area have relatively lower possibility of soil loss which is the 1 ton/ha in annual soil loss. While, 9.4% ($2,228km^2$) needed intensive and continuous management for soil loss. Because the amount of their annual soil loss was greater than 10 ton/ha that is optimum level suggested by Morgan(1995). For these areas, the author believe that a new approach which can minimize environmental impacts from soil loss through improvement of cultivation process and buffer forest zone should be applied. Second, according to the relationship between the RUSLE factors, topographical(LS-factor) and cover management(C-factor) conditions have a lot of influence on soil loss in case of the Nakdong River Basin. However, because of RUSLE factor's influence that affect to soil loss might be different based on the variety of spatial hierarchy and extent, it is necessary to analyze and evaluate factor's relationship in terms of spatial hierarchy and extent through field observations and further studies.

References

  1. 국립방재연구소, 1998, 개발에 따른 토사유출량 산정에 관한 연구(I)
  2. 권형중, 박근애, 김성준, 2002, GIS 및 다시기 RS자료를 이용한 토양손실량 변화 및 이동경로 추정, 한국GIS학회지 10(1) : 139-152
  3. 김주훈, 김경탁, 연규방, 2003, GIS를 이용한 토양침식 위험지역 분석, 한국지리정보학회지 6(2) : 22-32
  4. 박경훈, 2003, GIS 및 RUSLE 기법을 활용한 금호강 유역의 토양침식위험도 평가, 한국지리정보학회지 6(4) : 24-36
  5. 박무종, 김양수, 2001, 개발지역에서의 토사발생규모와 모형의 적용성 연구, 한국수자원학회지 34(1) : 3-17
  6. 박종영, 이정식, 이재준, 전병국, 2000, 중소하천유역에서 유역평균강우량 산정방법의 비교, 대한토목학회 학술발표회 논문집(III) 87-90
  7. 양인태, 박재훈, 천기선, 2003, 산불발생지역에서의 토양유실량에 관한 연구, 한국지형공간정보학회지 11(2) : 11-16
  8. 이규성, 1994, 산림유역의 토양유실량 예측을 위한 지리정보시스템의 범용토양유실식(USLE)에의 적용, 한국임학회지 83(3) : 322-330
  9. 이근상, 이환주, 엄승현, 조기성, 2001, GSIS를 활용한 토양침식모형에서 지형인자의 영향분석, 대한토목학회지 21(4-D) : 545-554
  10. 이민부, 김남신, 강철성, 신근하, 최한성, 한욱, 2003, 북한 회령지역의 농경지 변화에 따른 토양침식 추정, 한국지역지리학회지 9(3) : 373-384
  11. 이창희, 이병국, 최지용, 김은정, 1999, 물자원의 효율적 이용을 위한 유역 관리 방안: 낙동강 수계 관리를 중심으로, 한국환경정책평가연구원
  12. 이환주, 김환기, 2001, GSIS 공간분석을 활용한 토양침식모형의 입력인자 추출에 관한 연구, 한국측량학회지 19(1) : 27-37
  13. 장갑수, 2004, 지속가능한 농촌경관자원 관리를 위한 토지평가, 경북대학교 박사학위논문
  14. 장영률, 이근상, 조기성, 2002, GIS 기반에서 토양침식의 정량화를 위한 해상도 결정에 관한 연구, 한국GIS학회지 10(2) : 301-316.
  15. 정영상, 권영기, 임형식, 하상건, 양재의, 1999, 강원도 경사지 토양유실 예측용 신USLE의 적용을 위한 강수인자와 토양침식성인자의 검토, 한국토양비료학회지 32(1) : 31-38
  16. 환경부, 2001, 표토보전 및 침식(유실)방지 대책에 관한연구
  17. Arriaga, F.J. and B. Lowery, 2005, Spatial distribution of carbon over and eroded landscape in southwest Wisconsin, Soil and Tillage Research 81(2) : 155-162 https://doi.org/10.1016/j.still.2004.09.004
  18. Cooper, T., 2001. Soil science lecture notes: USLE and soil erosion, University of Minnesota
  19. Desmet, P.J.J. and G. Govers, 1996, A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units, Journal of Soil and Water Conservation 51(5) : 427-433
  20. Fernandez, C., J.Q. Wu, D.K. McCool, and C.O. Sto kle, 2003, Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD, Journal of Soil and Water Conservation 58(3) : 128-136
  21. Fu, G., S. Chen, and D. K. McCool, 2005, Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS, Soil and Tillage Research(In press) https://doi.org/10.1016/j.still.2004.11.009
  22. Millward, A.A. and J.E. Mersey, 1999, Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed, CATENA 38(2) : 109-129 https://doi.org/10.1016/S0341-8162(99)00067-3
  23. Morgan, R.P.C., 1995, Soil Erosion and Conservation, Longman
  24. Rattan, L., 2000, Integrated watershed management in the global ecosystem, CRC Press, New Yark, USA
  25. Renard, K. G., G.R. Foster, G.A. Weesies, D.K. McCool, and D.C. Yoder, 1997, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation(RUSLE), USDA-Agriculture Handbook, No. 703
  26. Ryan, P.J., S. Murphy, and N.J. McKenzie, 2003, Assessing soil erosion hazard for Australian forest management, Forest and Wood Products Research and Development Corporation
  27. Shi, Z.H., C.F. Cai, S.W. Ding, T.W. Wang, and T.L. Chow, 2004, Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in Three Gorge Area of China, CATENA 55(1) : 33-48 https://doi.org/10.1016/S0341-8162(03)00088-2
  28. Toxopeus, A.G., 1996, ISM: An Interactive Spatial and Temporal Modelling System as a Tool in Ecosystem Management, Ph.D. Thesis, ITC
  29. Van Remortel, R.D., M. Hamiltion, and R. Hickey, 2001, Estimating the LS factor for RUSLE through inerative slope length processing of DEM elevation data, Cartography 30(1) : 27-35 https://doi.org/10.1080/00690805.2001.9714133
  30. Van Remortel, R.D., R.W. Maichl, and R.J. Hickey, 2003, Computing the LS factor for the Revised Universal Soil Loss Equation through array-based slope processing of digital elevation model data using C++ executable, Computers and Geosciences 30(9-10) : 1043-1053