Measurement of Atmospheric BTX in Seoul Using Differential Optical Absorption Spectroscopy

차등흡수 분광법을 이용한 서울 대기 중 BTX 측정

  • 이철규 (광주과학기술원 환경공학과 환경모니터링 신기술 연구센터) ;
  • 최여진 (세종대학교 지구환경과학과 대기오염연구실) ;
  • 이정순 (광주과학기술원 환경공학과 환경모니터링 신기술 연구센터) ;
  • 정진상 (광주과학기술원 환경공학과 환경모니터링 신기술 연구센터) ;
  • 김영준 (광주과학기술원 환경공학과 환경모니터링 신기술 연구센터) ;
  • 김기현 (세종대학교 지구환경과학과 대기오염연구실)
  • Published : 2005.02.01

Abstract

In this study, a Long Path Differential Optical Absorption Spectroscopy system (K-JIST LP-DOAS) has been used to simultaneously measure atmospheric monoaromatic hydrocarbons and other trace compounds. The validity of the K-JIST LP-DOAS for measuring atmospheric monoaromatic hydrocarbons was tested during a field campaign between 12 February and 14 March 2003 at an urban site in Seoul, Korea through inter-comparative measurements against a collocated on-line Gas Chromatography (GC) system. The concentrations of benzene, toluene, p-xylene, and m-xylene were measured with the K-JIST LP-DOAS system in the UV region (239~302 nm) over a 740 m beam path. For the other trace compounds, a longer spectral range (299~362 nm) was used. In order to remove the interference of atmospheric abundant species (such as oxygen, sulfur dioxide and ozone), two oxygen optical density spectra obtained at two pathlengths, 697 and 1133m, and reference spectra of sulfur dioxide and ozone were incorporated in the fitting procedure. The mean concentrations measured by our LP-DOAS during the measurement period were 0.77 ($\pm$0.38) ppbv for benzene, 3.68 ($\pm$1.90) ppbv for toluene, 0.41 ($\pm$0.19) ppbv for p-xylene, 0.54 ($\pm$0.24) ppbv for m-xylene. The concentration data of benzene, toluene, p-xylene and m-xylene obtained by our LP-DOAS were found to be in relatively good correlations with those of the online GC system. Pearson's coefficients in the observed concentrations between LP-DOAS and on-line GC were 0.84 for benzene, 0.83 for toluene and 0.65 for m,p-xylene. This study suggests that the LP-DOAS system can be used to provide reliable information on both the mixing ratios and temporal distribution characteristics of monoaromatic hydrocarbons in the urban air.

Keywords

References

  1. 김기현, 김민영(2001) 장기관측자료를 이용한 DOAS와 점 측정 분석시스템의 바이어스 구조에 대한 평가, 한국대기환경학회지, 17(5), 395-405
  2. 김상우,원재광,박기학,윤순창,홍천상,김영준,허귀석(2001) Differential Optical Absorption Spectroscopy를 이용한 대기오염 측정 및 분석, 한국대기환경학회지,17(5),375-384
  3. 백성옥(1996) 환경 대기 중 휘발성 유기화합물의 포집과 분석방법, 한국대기보전학회지, 12(1),1-13
  4. 최여진, 오상인, 김기현(2003) 서울시 북동지점에서 방향족 휘발성 유기화합물의 겨울철 연속관측 연구, 한국대기환경학회지, 19(5), 491-502
  5. Axelsson, H., A. Eilard, A. Emanuelsson, B. Galle, H. Edner, P. Ragnarson and H. Kloo (1995) Measurement of aromatic hydrocarbons with the DOAS technique, Applied Spectroscopy, 49, 9, 1254-1260 https://doi.org/10.1366/0003702953965254
  6. Barrefors, G. (1996) Monitoring of benzene, toluene and pxylene in urban air with differential optical absorption spectroscopy technique, Science for the Total Environment, 189/292, 287-292
  7. Brocco, D., R. Fratarcangeli, L. Lepore, M. Petricca, and I. Ventrone (1997) Determination of aromatic hydrocarbons in urban air of ROME, Atmospheric Environment, 31, 4, 557-566 https://doi.org/10.1016/S1352-2310(96)00226-9
  8. Corner, T. and R. Stevens (1991) Air quality monitoring in atlanta with the differential optical absoption spectrometer, 84th Annual Meeting of Air and Waste Management Association, Vancouver
  9. Etzkorn, T., B. Klotz, S. Sorensen, I. Patroescu, I. Barnes, K. Becker, and U. Platt (1999) Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges, Atmospheric Environment, 33, 525-540 https://doi.org/10.1016/S1352-2310(98)00289-1
  10. Finlayson-Pitts B. and J. Pitts (2000) Chemistry of the upper and lower atmosphere, Academic Press, USA
  11. Kim, K.H. (2004) Comparison of BTX measurements using a commercial Differential Optical Absorption Spectroscopy and an on-line Gas Chromatography system, Envrionemntal Engineering Science, in press
  12. Kourtidis, K., I. Ziomass, C. Zerefos, A. Gousopoulos, D. Balis, and P. Tzoumaka (2000) Benzene and toluenen levels measured with a commercial DOAS sysgtem in Thessaloniki, Greece, Atmospheric Environment, 34, 1471-1480 https://doi.org/10.1016/S1352-2310(99)00375-1
  13. Kourtidis, K., I. Ziomass, C. Zerefos, E. Kosmidis, P. Symeonidis, E. Christophilopoulos, S. Karathanassis and A. Mploutsos (2002) Benzene, toluene, ozone, $NO_{2}$ and $SO_{2}$ Measurement in an urban street canyon in Thessaloniki, Greece, Atmospheric Environment, 36, 5355-5364 https://doi.org/10.1016/S1352-2310(02)00580-0
  14. Lee, J., B. Kuk, and Y. Kim (2002) Developement of Differtial Optical Absorption Spectroscopy system for detection of atmospheric species; $NO_{2}$, $SO_{2}$ and $O_{3}$, Journal of Korean Physics Society, 41(5),693-698
  15. Levenberg, K. (1944) A method for the solution of certain non-linear problems in least squares, Quarteraly of Applied Mathematics, 2, 164-168 https://doi.org/10.1090/qam/10666
  16. Marquardt, D. (1963) An algorithm for least-squares estimation of nonlinear parameters, Jouranl of Society of Industrial Applied Mathematics, 11, 2, 431-441 https://doi.org/10.1137/0111030
  17. Nikolau, K., P. Masclet, and G. Mouvier(1984) Sources and chemical reacivity of polynuclear aromatic hydrocarbons in the atmosphere-A critical review, The Science of The Total Environment 32, 103-132 https://doi.org/10.1016/0048-9697(84)90125-6
  18. Petrakis, M., B. Psiloglou, P. Kassomenos, and C. Cartalis (2003) Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system, Journal of Air & Waste Management Association Vol. 53, 1052-1064 https://doi.org/10.1080/10473289.2003.10466266
  19. Platt, U. (1994) Differential optical absorption spectroscopy. In: Air Monitoring by Spectroscopic Techniques, ed. M. W. Sigrist, Wiley & Sons, Newyork, 27-84
  20. Platt, U. (1999) Modern methods of the measurement of atmospheric trace gase: Invited lecture, Physical Chemistry Chemical Physics, 1, 5409-5415 https://doi.org/10.1039/a906810d
  21. Savitzky, A. and M. Golay (1964) Smoothing and differentiation of data by simplified least square procedures, Analytical Chemistry, 36, 8, 1627-1639 https://doi.org/10.1021/ac60214a047
  22. Seinfeld, J. and S. Pandis (1998) Atmosheric chemistry and physics, John Wiley & Sons, Inc., USA
  23. Stutz, J. and U. Platt (1996) Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods, Applied Optics, 35, 30, 6041-6053 https://doi.org/10.1364/AO.35.006041
  24. Stutz, J., E. S. Kim, U. Platt, P. Bruno, C. Perrino, and A. Febo (2000) UV-visible absorption cross sections of nitrous acid, Jouranal of Geophysical Research, 105, D11, 14585-14592 https://doi.org/10.1029/2000JD900003
  25. Vandaele, A., P. Simon, J. Guilmot, M. Carleer, and R. Colin (1994) $SO_{2}$ absorption cross section measurement in UV using fourier transform spectrometer, Journal of Geophysical Research, 99, 25599-25605 https://doi.org/10.1029/94JD02187
  26. Voigt, S., J. Orphal, and J. Burrows (1997) Reference species, Insititute of Environmental Physics, University of Bremen, Germany
  27. Volkamer, R., T. Etzkorn, A. Geyer, and U. Platt (1998) Correction of the oxygen interference with UV spectroscopic (DOAS) measurement of monocyclic aromatic hydrocarbons in the atmosphere, Atmospheric Environment, 32, 3721-3747
  28. WHO (1999) Guideline for Air Quality