DOI QR코드

DOI QR Code

광섬유 수동정렬을 위한 단일 모드 대형 코어 폴리머 광도파로

Large core polymeric single mode waveguide for passive fiber alignment

  • 조수홍 (부산대학교 전자공학과 집적광학연구실) ;
  • 백유진 (부산대학교 전자공학과 집적광학연구실) ;
  • 오민철 (부산대학교 전자공학과 집적광학연구실)
  • Cho, Su-Hong (Integrated Photonics Lab Department of Electronics Engineering, Pusan National University) ;
  • Beak, Yu-Jin (Integrated Photonics Lab Department of Electronics Engineering, Pusan National University) ;
  • Oh, Min-Choel (Integrated Photonics Lab Department of Electronics Engineering, Pusan National University)
  • 발행 : 2005.02.01

초록

정력 오차 허용 범위를 증가 시켜서 효과적인 수동정렬이 가능토록 하기 위한 단일 모드 대형 코어 폴리머 광도파로를 구현하였다. 대형 코어 광도파로는 TEC(thermally expanded core) 광섬유의 모드와 일치하는 큰 도파모드를 가진다. 이로 인해 광섬유와 도파로의 정렬오차로 인한 모드 결합 손실을 줄일 수 있게 된다. 코어와 클래딩의 굴절률 차이가 5 ${\times}$ $10^{-4}$ 인 폴리머 재료를 이용하여 25 ${\times}$ 25 $\mu\textrm{m}$$^2$ 크기의 정사각형 광도파로를 제작하였으며 도파모드 관측결과 단일모드로 동작함을 확인하였다. 이와 같이 두꺼운 형태의 광도파로 구조 제작을 위하여 자외선 경화를 이용한 인젝션 몰딩(injection molding) 공정을 사용하였다. 제작된 광도파로 소자를 TEC 광섬유와 정렬연결을 할 때 정렬오차가 4.5 $\mu\textrm{m}$ 까지 증가하더라도 삽입손실 증가는 0.5 dB 이하고 유지됨을 확인하였다.

To increase the tolerance for passive fiber alignment, a single mode polymer waveguide with a large core structure is demonstrated. The large core waveguide is designed to have a mode profile comparable to that of a thermally expanded core (TEC) fiber, and it can be connected to a high-contrast waveguide through an adiabatic transition taper structure. From a waveguide with a rectangular core of 25 ${\times}$ 25 ${\mu}{\textrm}{m}$$^2$, a single mode propagation is observed when the index contrast is as low as 0.0005. A UV-cured injection molding method is used to fabricate the thick core structure. Due to the large mode size, the insertion loss of the device is below 0.5 dB until the lateral displacement of the TEC fiber is 4.5 ${\mu}{\textrm}{m}$. The low insertion loss is important for reproducible passive alignment.

키워드

참고문헌

  1. Min-Cheol Oh, Wol-Yon Hwang, Young-Ouk Noh, Hyung-Jong Lee, and Seon-Gyu Han, 'Reliable low-cost polymeric optical waveguide device,' OECC/COIN2004, Yokkohama Japan, 14F2-3, pp. 558-559, July 2004
  2. Byung-Tak Lee, Min-Suk Kwon, Jun-Bo Yoon, and Sang-Yung Shin, 'Fabrication of polymeric large-core waveguides for optical interconnects using a rubber molding process,' IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 62-64, Jan. 2000 https://doi.org/10.1109/68.817494
  3. Choon-Gi Choi, Sang-Pil Han, Byeong-Cheol Kim, Seung-Ho Ahn, and Myung-Yung Jeong, 'Fabrication of large-core 1 X 16 optical power splitters in polymers using hot-embossing process,' IEEE Photon. Technol. Lett., vol. 15, no. 6, pp. 825-827, June 2003 https://doi.org/10.1109/LPT.2003.811139
  4. Naoaki Yamaguchi, Yasuo Kokubun, K. Sato, 'Low-loss spot-size transformer by dual tapered waveguides (DTW-SST),' IEEE J. Lightwave Technol., vol. 8, no. 4, pp. 587-594, April 1990 https://doi.org/10.1109/50.50765
  5. Min-Cheol Oh, Cheng Zhang, Hyung-Jong Lee, William H. Steier, and Harold R. Fetterman, 'Low-loss interconnection between electrooptic and passive polymer waveguide with a vertical taper,' IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1121-1123, Aug. 2002 https://doi.org/10.1109/LPT.2002.1021989
  6. Katsunari Okamoto, Fundamentals of Optical Waveguides, ACADEMIC PRESS, USA, 2000
  7. Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann, 'Large single-mode rib waveguides in GeSi-Si and Si-on-$SiO_2$,' IEEE J. Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, Aug. 1991 https://doi.org/10.1109/3.83406
  8. Yasuo Ohtera, Osamu Hanaizumi, 'Numerical analysis of eigenmodes and splice loss of thermally diffused expanded core fibers,' IEEE J. Lightwave Technol., vol. 17, no. 12, pp. 2675-2682, Dec. 1999 https://doi.org/10.1109/50.809689