Biodistribution of $^{99m}Tc$-Lactosylated Serum Albumin in Mice with Diethylnitrosamine or Thiacetamide Induced Liver Injury

Diethylnitrosamine 및 Thioacetamide 유발 간손상 생쥐에서의 $^{99m}Tc$-Lactosylated Serum Albumin의 체내 분포상

  • Whang, Jae-Seok (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Sung, Young-Ok (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Seo, Ji-Hyoung (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Bae, Jin-Ho (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Jeong, Shin-Young (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Yoo, Jung-Soo (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Jeong, Jae-Min (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Tae (Department of Nuclear Medicine, Kyungpook National University Medical School) ;
  • Lee, Kyu-Bo (Department of Nuclear Medicine, Kyungpook National University Medical School)
  • 황재석 (경북대학교 의과대학 핵의학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학교실) ;
  • 성영옥 (경북대학교 의과대학 핵의학교실) ;
  • 서지형 (경북대학교 의과대학 핵의학교실) ;
  • 배진호 (경북대학교 의과대학 핵의학교실) ;
  • 정신영 (경북대학교 의과대학 핵의학교실) ;
  • 유정수 (경북대학교 의과대학 핵의학교실) ;
  • 정재민 (서울대학교 의과대학 핵의학교실) ;
  • 이재태 (경북대학교 의과대학 핵의학교실) ;
  • 이규보 (경북대학교 의과대학 핵의학교실)
  • Published : 2005.06.30

Abstract

Purpose: Tc-99m labeled diethylenetriaminepentaacctic acid (DTPA)-coupled galactosylated human serum albumin (GSA) is a currently used imaging agent for asialoglycoprotein receptor (ASGPR) of the liver, but, it has several shortcomings. Recently a new ASGPR imaging agent, $^{99m}Tc$-lactosylated human serum albumin (LSA), with simple labeling procedure, high labeling efficiency, high stability was developed. In order to assess the feasibility of the $^{99m}Tc$-LSA as a ASGPR imaging radiopharmaceuticals, we performed biodistribution study of the tracer in liver injured mice model and the results were compared with histolgic data. Materals and Methods: To induce hepatic damage in ICR mice, diethylnitrosamine (DEN) ($60mg/kg/week{\times}5time$, low dose or $180mg/kg/week{\times}2times$, high dose) and thioacetamide (TAA) ($50mg/kg{\times}1time$) were administrated intraperitoneally. Degree of liver damage was evaluated by tissue hematoxilin-eosin stain, and expression of asialoglycoprotein receptor (ASGPR) was assessed by immunohistochemistry using ASGPR antibody. $^{99m}Tc$-LSA was intravenously administrated via tail vein in DEN or TAA treated mice, and biodistribution study of the tracer was also performed. Results: DEN treated mice showed ballooning of hepatocyte and inflammatory cell infiltration in low dose group and severe hapatocyte necrosis in high dose group, and low dose group showed higher ASGPR staining than control mice in immunohistochemical staining. TAA treated mice showed severe hepatic necrosis. $^{99m}Tc$-LSA Biodistribution study showed that mice with hepatic necrosis induced by high dose DEN or TAA revealed higher blood activity and lower liver activity than control mice, due to slow clearance of the tracer by the liver. The degree of liver uptake was inversely correlated with the degree of histologic liver damage. But low dose DEN treated mice with mild hepatic injury showed normal blood clearance and hepatic activity, partly due to overexpression of ASGPR in mice with mild degree hepatic injury. Conclusion: Liver uptake of $^{99m}Tc$-LSA was inversely correlated with degree of histologic hepatic injury in DEN and TAA treated mice. These results support that $^{99m}Tc$-LSA can be used to evaluate the liver status in liver disease patients.

목적: 비침습적으로 간의 상태를 예측하기 위하여 여러 검사법들이 시도되고 있으나 각각의 제한점이 있다. 간 신티그라피는 방사성교질과 방사능 표지 iminodiacetic acid (IDA) 화합물이 가장 널리 사용되고 있으나, 실제 간세포의 상태를 나타내는데는 부족한 점이 있다. 최근에는 간세포 표면에 발현되는 asialoglycoprotein (ASGP) 수용체 (ASGP receptor: ASGPR)에 특이적으로 결합 할 수 있는 제제인 galactosylated serum albumin (GSA)이 간 신티그라피에 유용한 방사성의약품으로 성장하고 있으나 제한점을 가지고 있다. 본 연구는 현재 상용화된 GSA보다 유용한 ASGPR 영상용 방사성의약품인 lactosylated serum albumin (LSA)이 간세포의 ASGPR 발현 정도의 평가에 이용될 수 있는지와 조직학적 간손상정도 비침습적 평가 하는데 이용될 수 있는 방사성의약품인지를 알아보고자 시행하였다. 대상 및 방법: $^{99m}Tc$-LSA의 간기능 평가 성능을 알아보기 위하여 diethylnitrosamine (DEN)과 thioacetamide (TAA) 투여로 간손상을 일으킨 생쥐에서 생체내 분포변화를 알아보았으며, DEN 투여로 간손상을 일으킨 흰쥐에서 영상을 통하여 간 및 혈액내 방사능 분포 변화 양상을 알아보았다. 방사성의약품의 체내 분포 변화 및 간 및 혈액내 분포 변화가 간손상 여부를 잘 반영하는 지를 알아보기 위하여 간조직 검사를 시행하여 비교하였다. 결과: 체중 kg당 DEN 60 mg이 주당 1회 5번 투여된 생쥐는 광학현미경상 간손상 정도가 미약하였으며, 면역조직화학검사상 ASGPR의 발현이 높았으며, $^{99m}Tc$-LSA의 체내 분포는 정상생쥐와 유의한 차이가 없었다. 체중 kg당 DEN 180 mg이 주당 1회 2번 투여된 생쥐는 조직검사상 간조직의 괴사가 광범위하였으며, 면역조직화학검사상 ASGPR의 발현이 감소되어 있었고, $^{99m}Tc$-LSA의 체내 분포는 정상생쥐에 비해 간섭취가 감소되어 있었으며, 혈액에서의 제거나 늦었다. TAA를 투여하여 간조직의 괴사가 발생한 생쥐에서도 $^{99m}Tc$-LSA의 체내 분포는 정상생쥐에 비해 간섭취가 감소되어 있었으며, 혈액에서의 제거가 늦었다. 결론: 새로이 개발된 $^{99m}Tc$-LSA는 정상 간조직에 섭취정도가 높으며, ASGPR 발현정도에 비례하여 간섭취를 나타내며, 간손상 정도에 따라 섭취가 감소하여, 간손상 정도를 비침습적으로 잘 반영해 주는 것으로 나타나 향후 간기능 평가용 방사성의약품으로 임상에 손쉽게 쓰일 수 있을 것으로 기대된다.

Keywords

References

  1. Krohn KA, Vera DR, Steffen SM. $^{99m}Tc$-Neogalactosylalbumin: a general model for some bifunctional carbohydrates. J Label Comp Radiopharm 1980;18:91-3.
  2. Lee J. Quantitative evaluation of liver function with hepatic receptor scintigraphy using Tc-99m galactosylated serum albumin. Korean J Nucl Med 1998;32:305-13
  3. Miki K, Kubota K, Inoue Y, Vera DR, Makuuchi M. Receptor measurements via Tc-99m GSA kinetic modeling are proportional to functional hepatocellular mass. J Nucl Med 2001;42:733-7
  4. Jeong SY, Lee JT, Seo MR, Yoo JA, Bae JH, Ahn BC, et al. Evaluation of Liver Function Using $^{99m}Tc$-Lactosylated Serum Albumin Liver Scintigraphy in Rat with Acute Hepatic Injury Induced by Dimethylnitrosamine. Korean J Nucl Med 2003;37: 418-27.
  5. Zakim D, Boyer TD. Hepatology; A textbook of liver disease. 3rd ed. Philadelphia: W.B. Saunders Co; 1996. p. 720
  6. MacSween RN, Anthony PP, Scheuer PJ, Burt AD, Portmann BC. Pathology of the liver. 3rd ed. Edinburgh: Churchill Livingstone; 1994. p. 563-8
  7. Larrey D. Drug-induced hepatitis: epidemiologic, clinical, diagnostic and physiopathologic aspects in 1995. Rev Med Intern 1995;16: 752-8 https://doi.org/10.1016/0248-8663(96)80784-3
  8. Acharya SK, Dasarathy S, Kumer TL, Sushma S, Prasanna KS, Tandon A, et al. Fulminant hepatitis in a tropical population: clinical course, cause, and early predictors of outcome. Hepatology 1996;23:1448-55 https://doi.org/10.1002/hep.510230622
  9. Ambuhl PM, Ballmer PE, Krahenbuhl S. Fulminant hepatitis: pathogenesis, clinical aspects and management. Schweiz Med Wochenschr 1994;124:368-80
  10. Batt AM, Ferrari L. Manifestation of chemically induced liver damage. Clin Chem 1995;41:1882-7
  11. Zakim D, Boyer TD. Hepatology; A textbook of liver disease. 3rd ed. Philadelphia: W.B. Saunders Co; 1996. p. 789-871
  12. Creswell SN, Burrows D. Liver biopsies in psoriatics-complications and evaluation. Int J Dermatol 1980;19:217-9 https://doi.org/10.1111/j.1365-4362.1980.tb00302.x
  13. Hegarty JE, Williams R. Liver biopsies: techniques, clinical applications, and complications. Br Med J(Clin Res Ed) 1984;288: 1254-6 https://doi.org/10.1136/bmj.288.6426.1254
  14. Concannon JP, Edelmann A, Frich JC, Kunkel G. Localized 'radiation hepatitis' as demonstrated by scintillation scanning. Radiol 1967;89:136-9 https://doi.org/10.1148/89.1.136
  15. Gelfand MJ, Saha S, Aron BS. Imaging of irradiated liver with Tc-99m-sulfur colloid and Tc-99m-IDA. Clin Nucl Med 1981;6: 399-402 https://doi.org/10.1097/00003072-198109000-00003
  16. Singh A, Thakur R. Scintigraphic study of prophylthiouracil induced submassive hepatic necrosis. Clin Nucl Med 1995;20: 132-5 https://doi.org/10.1097/00003072-199502000-00008
  17. Svensson G, Friman S, Jacobsson L, Holmberg SB. Hepatocyte and Kupffer cell function after liver transplantation in the rat-in vivo evaluation with dynamic scintigraphy. Liver 1995;15:189-95 https://doi.org/10.1055/s-2007-1007277
  18. Ekman M, Fjalling M, Friman S, Carlson S, Volkmann R. Liver uptake function measured by IODIDA clearance rate in liver transplant patients and healty volunteers. Nucl Med Commun 1996;17:235-42 https://doi.org/10.1097/00006231-199603000-00011
  19. Brunot B, Petras S, Germain P, Vinee P, Constantinesco A. Biopsy and quantitative hepatobiliary scintigraphy in the evaluation of liver transplantation. J Nucl Med 1994;35:1321-7
  20. Hirose S, Ise H, Uchiyama M, Cho CS, Akaike T. Regulation of asialoglycoprotein expression in the proliferative state of hepatocytes. Bioch Biophysic Res Commun 2001;287:675-81 https://doi.org/10.1006/bbrc.2001.5631
  21. Kouda K, Ha-Kawa SK, Tanaka Y. Increased technetium-99m-GSA uptake per hepatocyte in rats with administration of dimethylnitrosamine or hepatocyte growth factor. J Nucl Med 1998;39: 1463-7
  22. Stockert RJ, Morell AG. Hepatic binding protein: the galactose specific receptor of mammalian hepatocytes. Hepatology 1983;3: 750-7 https://doi.org/10.1002/hep.1840030520
  23. Chang TM, Chang CL. Hepatic uptake of asialoglycoprotein is different among mammalian species due to different receptor distribution. Biochem Biophy Acta 1988;942:57-64 https://doi.org/10.1016/0005-2736(88)90274-X
  24. Kubota Y, Kojima M, Hazama H, Kawa S, Nakazawa M, Nishiyama Y, et al. A new liver function test using the asialoglycoproteinreceptor on the liver cell membrane: 1. Evaluation of liver imaging using the Tc-99m-neoglycoprotein. Kaku Igaku 1986;23:899-905
  25. Yamamoto K. Nuclear medicine for evaluation of liver functions. Kaku Igaku 1994;31:521-6
  26. Rearden DT, Meares CF, Goodwin DA, McTigue M, David GS, Stone MR, et al. Antibodies against metal chelates. Nature 1985;316:265-7 https://doi.org/10.1038/316265a0
  27. Jeong JM, Hong MK, Kim YJ, Lee J, Kang JH, Lee DS, et al. Development of $^{99m}Tc$-neomannosyl human serum albumin ($^{99m}Tc$--MSA) as a novel receptor binding agent for sentinel lymph node imaging. Nucl Med Commun 2004;25:1211-7. https://doi.org/10.1097/00006231-200412000-00010
  28. Jeong JM, Hong MK, Lee J, Son M, So Y, Lee DS, et al. $^{99m}Tc$-neolactosylated human serum albumin for imaging the hepatic asialoglycoprotein receptor. Bioconjug Chem 2004;15:850-5. https://doi.org/10.1021/bc0342074
  29. Craddock VM. Nitrosamines and human cancer: proof of an association? Nature 1983;306:638 https://doi.org/10.1038/306638a0
  30. Montesano R, Bartsch H. Mutagenic and carcinogenic N-nitroso compounds: possible environmental hazards. Mutat Res 1976;32: 179-228 https://doi.org/10.1016/0165-1110(76)90001-4
  31. Mayer MJ, Schook LB. Immunotoxicity of nitrosamines. In: Smialowicz RJ, Holsapple MP, editors. Experimental Immunotoxicology. Boca Raton: CRC Press; 1996. p. 351-66
  32. Dyroff MC, Neal RA. Studies of the mechanism of metabolism of thioacetamide S-oxidase by rat liver-microsomes. Mol Pharmacol 1983;23:219-27
  33. Chieli E, Mavaldi G. Role of microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxidase. Toxicol 1984;31:41-52 https://doi.org/10.1016/0300-483X(84)90154-9
  34. Jungermann K. Functional heterogeneity of periportal and perivenous hepatocytes. Enzyme 1986;35:161-80 https://doi.org/10.1159/000469338
  35. Zakim D, Boyer TD. Hepatology; A textbook of liver disease. 3rd ed. Philadelphia: W.B. Saunders Co; 1996. p. 9