DOI QR코드

DOI QR Code

Effects of La2O3 on the Piezoelectric Properties of Lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 Piezoelectric Ceramics

무연 BNBT 세라믹스의 압전특성에 미치는 La2O3의 영향

  • Son Young-Jin (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University) ;
  • Yoon Man-Soon (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University) ;
  • Ur Soon-Chul (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University)
  • 손영진 (충주대학교 신소재공학과/친환경 에너지 변환 저장 소재 및 부품개발 연구센터) ;
  • 윤만순 (충주대학교 신소재공학과/친환경 에너지 변환 저장 소재 및 부품개발 연구센터) ;
  • 어순철 (충주대학교 신소재공학과/친환경 에너지 변환 저장 소재 및 부품개발 연구센터)
  • Published : 2005.12.01

Abstract

A lead free piezoelectric material, bismuth sodium barium titanate $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ (BNBT), was considered as an environment-friendly alternatives for the current PZT system. A perovskite BNBT was synthesized by conventional bulk ceramic processing technique. In order to improve piezoelectric properties, $La_2O_3$ as a dopant was incorporated into the BNBT system up to 0.025 moi, ana the effects on subsequent the piezoelectric ana dielectric properties were systematically investigated. With increasing $La_2O_3$ contents, the equilibrium grain shape was remarkably evidenced and sintered density was increased. Piezoelectric and dielectric properties were s]town to have maximum values at the $La_2O_3$ contents of 0.02 mol. $La^{3+}$ ions seemed to act as a softener in the BNBT system and to enhance dielectric and piezoelectric properties in this study.

Keywords

References

  1. J. Long, H. Chen and Z. Meng, Mater. Sci. and Eng. B99, 445 (2003) https://doi.org/10.1016/S0921-5107(02)00455-5
  2. N. Setter, Piezoelectric Materials in Devices, Ceramics Laboratory, EPFL, Swiss, p.389 (2002)
  3. H. Nagata and T. Takenaka, J. of Euro. Ceram. Soc., 21, 1299 (2001) https://doi.org/10.1016/S0955-2219(01)00005-X
  4. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. -Solid State (Engl. Transl.), 2, 2651 (1961)
  5. B.-J. Chu, D.-R. Chen, G.-R. Lia and Q.-R. Yin, J. of Euro. Ceram, Soc., 22, 2115 (2002) https://doi.org/10.1016/S0955-2219(02)00027-4
  6. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. of Appl. Phys., 30, 2236 (1991) https://doi.org/10.1143/JJAP.30.2236
  7. IRE Standards on Piezoelectric Crystals, Measurements of Piezoelectric Ceramics, Proc., 49, 1161 (1961) https://doi.org/10.1109/JRPROC.1961.287860
  8. C. Peng, J.-F. Li and W. Gong, Mater. Letters, 59, 1576 (2005) https://doi.org/10.1016/j.matlet.2005.01.026
  9. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd Edition, Chapman & Hall, p.115 (1989)
  10. B. Jaffe, Piezoelectric ceramics, Academic Press, New York, p.237, (1971)
  11. T. Yamamoto, Am. Ceram. Soc. Bull., 71, 978 (1992) https://doi.org/10.1111/j.1151-2916.1988.tb07568.x
  12. M.J. Kim and S. C. Choi, J. Kor. Ceram. Soc., 36, 1108 (1999)