The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor

소규모 반응로를 이용한 감압 잔사유지 연소실험

  • Park Ho Young (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO) ;
  • Kim Young Ju (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO) ;
  • Kim Tae Hyung (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO) ;
  • Seo Sang Il (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO)
  • 박호영 (한전 전력연구원 연소열공학그룹) ;
  • 김영주 (한전 전력연구원 연소열공학그룹) ;
  • 김태형 (한전 전력연구원 연소열공학그룹) ;
  • 서상일 (한전 전력연구원 연소열공학그룹)
  • Published : 2005.12.01

Abstract

Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.

액체연료(중유)공급량 기준 20kg/hr규모의 반응로에서 증기분무 내부 혼합식 노즐을 이용하여 잔사유의 연소실험을 수행하였다. 본 실험에서 사용한 감압 잔사유는 점도가 높고 황함량, 잔류탄소와 금속성분의 함량도 높았다. 잔사유의 착화를 위해서는 반응로를 일정온도까지 예열하여야 했으며 이는 LPG를 이용하였다. 잔사유 공급량을 변화시키면서 축방향 및 반경방향의 로내 가스 온도, 주요 가스농도 및 채집된 고체 입자를 분석하였다. 잔사유의 주반응영역은 버너 팁으로부터 약 1 m 근방에서 형성되었으며 이는 축방향 가스 온도, 농도 분포 및 입자의 크기로부터 확인할 수 있었고, 반응로의 하류에서는 완전 확립된 온도분포를 보여주고 있었다. 고체 입자의 SEM 분석으로부터 잔류 탄소입자는 기공이 많은 형태를 띠고 있었다.

Keywords

References

  1. Gray, M.R. 'Upgrading petroleum residues and heavy oils', Narcel Dekker, INC., 1994, 1-3
  2. Minoru, H. 'Demonstrative operation plan of asphalt burning power plant in oil refinery', 17th WEC congress, 1998
  3. Ichinose, T.; Fujimura, K.; Takeno, K.; Motai, T.; Arakawa, Y.; Fuki, H. 'Combustion characteristics and pollution minimum technology for VR (Vacuum Residue) fired boiler', JSME International Journal, 1998, 41, 1055-1060 https://doi.org/10.1299/jsmeb.41.1055
  4. Tokarska, A. 'Investigation on the processing of oil vacuum residue and its mixture with coal and tars', Fuel, 1996, 75, 1094-1100 https://doi.org/10.1016/0016-2361(96)00064-6
  5. Yutai, C.; Watkinson, A.P. 'Pyrolysis of pith', Fuel, 1998, 77, 695-711 https://doi.org/10.1016/S0016-2361(97)00236-6
  6. Schucker, R.C. 'Thermogravimetric determination of the coking kinetics of Arab heavy vacuum residue', Ind. Eng. Chem. Process Des. Dev., 1983, 22, 615­-619 https://doi.org/10.1021/i200023a011
  7. Martinez-Escandell, M.; Torregrosa, P.; Marsh, H. 'Pyrolysis of petroleum residues : I. Yields and products analysis', Carbon, 1999, 37, 1567-1582 https://doi.org/10.1016/S0008-6223(99)00028-7
  8. Suzuki, M.; Itoh, M.; Mishima, M.; Watanabe, Y.; Tagegami, Y. 'Two stage pyrolysis of heavy oils. 1. Pyrolysis of vacuum residue for olefin production in a batch type reactor', Fuel, 1981, 60, 961-966 https://doi.org/10.1016/0016-2361(81)90092-2
  9. Fujimura, K.; Mastumoto, H.; Arakawa, Y.; Fujii, H.; Mizoguchi, T. Development and operation results of VR firing boiler. Mitsubishi Juco Giho, 1999, 36. (See also http://www.mhi.co.jp/tech/htm/9362/c936211a.htm.)
  10. Basu, P.; Kefa, C.; Jestin, L. Boilers and Burners. 2000, 23-24
  11. Lefebre, A.H. Atomization and sprays. Hemisphere Publishing Corporation, 1989, 14-18
  12. Urban, D.L.; Huey, S.P.C.; Dryer, F.L. 'Evaluation of the coke formation potential of residual fuel oils', 24th symposium (International) on combustion, 1992, 1357-1364
  13. Cho, H.C.; Shin, H.D. 'The behavior of flame front with heating mechanism in two entrained-bed coal reactors', Fuel, 1999, 78, 953-961 https://doi.org/10.1016/S0016-2361(99)00014-9
  14. Villasenor, R.; Escalera, R. 'A highly radiative combustion chamber for heavy fuel oil combustion', International journal of heat and mass transfer, 1998, 41, 3087-3097 https://doi.org/10.1016/S0017-9310(98)00025-8
  15. Bowman, C.T. 'Kinetics of pollutant formation and destruction in combustion', in Progress in engineering and combustion science. Pergamon press Ltd. 1979
  16. Pfefferle, L.D.; Churchill, S.W. 'NOx production from the combustion of ethane doped with ammonia in a thermally stabilized plug flow bumer', Combustion Science and Technology, 1986, 49, 235-249
  17. Moleo, L.J. 'Pollutant formation and interaction in the combustion of heavy liquis fuels', Phd Thesis, University of London, 2004
  18. Cullis, C.F.; Mulcathu, M.F.R. 'The kinetics of combustion of gaseous sulphur compounds', Combustion and Flame, 1972, 18, 225-292 https://doi.org/10.1016/S0010-2180(72)80139-1
  19. Burgess, A.R.; Molero, L.J. 'Combustion generated NOx and $SO_{2}$ from heavy liquid fuels', Joint meeting of the Portuguess, British, Spanish and Swedish Sections of The combustion Institute, 1999, section 6.7.1-6.7.4
  20. Clayton, R.M.; Back, L.H. 'Physical and chemical characteristics of cenospheres from the combustion of heavy fuel oil', Journal of engineering for gas turbines and power, 1989, 111, 679-684 https://doi.org/10.1115/1.3240312
  21. Northrop, P.S.; Gavalas, G.R.; Levendis, Y.A. 'Com­bustion characteristics of carbonaceous residues from heavy oil fired boilers', Energy and Fuel, 1991, 5, 587-594 https://doi.org/10.1021/ef00028a010
  22. Marrone, N.J.; Kennedy, I.M.; Dryer, F.L. 'Cokes formation in the combustion of isolated heavy oil droplets', Combustion Science and technology, 1984, 36 149-170 https://doi.org/10.1080/00102208408923731
  23. Bhatia, S.K.; Perlmutter, D.D. 'A random pore model for fluid-solid reactions: I. Isothermal, kinetic control', AiChe Journal, 1980, 26, 379-385 https://doi.org/10.1002/aic.690260308