Molecular Structure of PCP Pincer Complexes: Poisoning Catalyst on the Dehydrogenation of Alkanes

알칸의 탈수소화반응에서의 촉매독 화합물의 분자구조

  • Lee Ji Hyun (Department of Chemical Engineering, University of Seoul) ;
  • Chun Sang Jin (Department of Chemical Engineering, University of Seoul) ;
  • Kwon Ki Hyeok (Department of Chemical Engineering, University of Seoul) ;
  • Lee Do Weon (Department of Chemical Engineering, University of Seoul)
  • 이지현 (서울시립대학교 화학공학과) ;
  • 전상진 (서울시립대학교 화학공학과) ;
  • 권기혁 (서울시립대학교 화학공학과) ;
  • 이도원 (서울시립대학교 화학공학과)
  • Published : 2005.06.01

Abstract

The dihydrido P-C-P pincer complex, $IrH_2{C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (1), was successfully prepared from the reaction of the hydrochloride complex, $IrClH (C_6H_3-2,6-(CH_2PBu_2^t)_2}$, and super acid $(LiBEt_3H)$ under 1 atm of hydrogen in pentane solution at room temperature and followed by Heating at $130^{\circ}C$ in vacuo. Jensen recently found that the dihydrido P-C-P pincer complex 1 is a highly active homogeneous catalyst for the transfer dehydrogenation of alkanes with unusual longterm stability at temperatures as high as $200^{\circ}C$. The treatment of dihydrido complex 1 with nitrogen, water, carbon dioxide, and carbon monoxide in presence of tert-butylethylene (the) at room temperature in an appropriate solution gave the dinitrogen complex, $[Ir{C-6H_3-2,6-(CH_2PBu_2^t)_2}]_2({\mu}-N_2)$ (2), the hydrido hydroxyl complex, $IrH(OH){C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (3), the carbon dioxide complex, $Ir({\eta}^2-CO_2) {C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (including the bicarbonate complex, $IrH({\kappa}^2-O_2COH){C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(4))$, and the carbonyl complex, $Ir(CO) {C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(5)$ (including the carboxyl complex, $IrH(C(O)OH) {C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(6))$, in good yield, respectively. These P-C-P iridium complexes were isolated and characterized by $^1H,\;^{13}C,\;^{31}P\; NMR$, and IR spectroscopy. In addition, the complexes (1-6) were characterized by a single crystal X-ray crystallography. These complexes account for these small molecules' inhibition of dehydrogenation of alkanes catalyzed by the dihydrido complex 1.

알칸화합물(alkanes)에서 탄소-수소결합을 활성화시켜서 더욱 값이 비싸고 더 유용한 알켄화합물(alkenes)로 만들 수 있는 촉매를 만들고자 지난 수 십 년간 많은 화학자들이 연구해왔다 이러한 목적의 하나로서 두개의 수소를 가지는 이리디움 P-C-P핀서(pincer) 착물 $(IrH_2{C_6H_3-2,6-(CH_2PBu_2^t)_2})$을 성공적으로 합성하였다. 이 착물은 알칸의 탈수소화반응(dehyrogenation)에 아주 효과적인 촉매로 알려졌다 알칸의 탈수소화반응에 촉매독으로 작용하는 질소, 물, 이산화탄소 및 일산화탄소와 같은 작은 화합물들과 직접 반응시켜서 어떻게 촉매독으로 작용하는지를 알아봤다. 촉매독으로 작용할 수 있는 화합물들을 합성하여 핵자기공명분광법(NMR)과 적외선분광법(IR)으로 확인하였고 분자구조를 알아보기 위해서 단결정X-ray 회절법을 통하여 확인하였다. 본 논문에서는 촉매 및 촉매독물질의 합성과 분자구조와 각각의 화합물의 반응성과 특이성을 알아보았다.

Keywords

References

  1. Hill, C. L., Activation and Functionalization of Alkanes, John Wiley, New York (1989)
  2. Shilov, A. E., Activation of Saturated Hydrocarbons by Transition Metal Complexes, Reidel, Boston (1984)
  3. Davies, J. A., Watson, P. L., Leibman, J. F. and Greenberg, A., Selective Hydrocarbon Activation, VCH, Toledo (1990)
  4. Arndtsen, B. A., Bergman, R. G, Mobley, T. A. and Peterson, T. H., Acc. Chem. Res., 28, 154 (1995)
  5. All publications in J. Organomet. Chem., 504, 1155 (1995)
  6. Crabtree, R. H., Mihelcic, J. M. and Quirk, J. M., J. Am. Chem. Soc., 101, 7738 (1979) https://doi.org/10.1021/ja00498a030
  7. Crabtree, R. H., Mellea, M. F., Mihelcic, J. M. and Quirk, J. M., J. Am. Chem. Soc., 104, 107 (1982)
  8. Janowicz, A. H. and Bergman, R. G, J. Am. Chem. Soc., 104, 352 (1982)
  9. Hoyano, J. K., McMaster, A. D. and Graham, W. A. G, J. Am. Chem. Soc., 105, 7190 (1983)
  10. Baudry, D., Ephritikhine, M. and Felkin, H., Chem. Commun., 1243 (1980)
  11. Baudry, D., Ephritikhine, M. and Felkin, H., Chem. Commun., 606 (1982)
  12. Baudry, D., Ephritikhine, M. and Felkin, H., Chem. Commun., 788 (1983)
  13. Felkin, H., Fillebeen-Khan, T., Holmes-Smith, R. and Zakrzewski, J., Tetrahedron Lett., 25, 1279 (1984)
  14. Burk, M. W., Crabtree, R. H., Parnell, C. P. and Uriarte, R. J., Organometallics, 3, 816 (1984) https://doi.org/10.1021/om00085a005
  15. Felkin, H., Fillebeen-Khan, T., Holmes-Smith, R. and Lin, Y., Tetrahedron Lett., 26, 1999 (1985)
  16. Maguire, J. A. and Goldman, A. S., J. Am. Chem. Soc., 113, 6706 (1991) https://doi.org/10.1021/ja00003a037
  17. Maguire, J. A., Petrillo, A. and Goldman, A. S., J. Am. Chem. Soc., 114, 9492 (1992)
  18. Miller, J. A. and Knox, L. K., Chem. Commun., 1449 (1994)
  19. Belli, J. and Jensen, C. M., Organometallics, 15, 5551 (1996)
  20. Braunstein, P., Chauvin, Y., Nahring, J., DeChian, A., Fischer, J., Tiripicchio, A. and Ugozzoli, F., Organometallics, 3, 816 (1984) https://doi.org/10.1021/om00085a005
  21. Gupta, M., Hagen, C., Flesher, R. J., Kaska, W C. and Jensen, C. M., Chem. Commun., 2083 (1996)
  22. Jensen, C. M., Chem. Commun., 2443 (1999)
  23. Gupta, M., Hagen, C., Kaska, W C., Cramer, R. E. and Jensen, C. M., J. Am. Chem. Soc., 119, 840 (1997)
  24. Liu, F., Pak, E. B., Singh, B., Jensen, C. M. and Goldman, A. S., J. Am. Chem. Soc., 121, 4086 (1999)
  25. Gupta, M., Kaska, W. C. and Jensen, C. M., Chem. Commun., 461 (1997)
  26. Burk, M. W, Crabtree, R. H. and McGrath, D. V., Chem. Commun., 1829 (1985)
  27. Burk, M. W. and Crabtree, R. H., J. Am. Chem. Soc., 109, 8025 (1987)
  28. Nomura, K. and Saito, Y., Chem. Commun., 161 (1988)
  29. Nomura, K. and Saito, Y., J. Mol. Catal., 54, 57 (1989)
  30. Sakakura, T, Sodeyama, T and Tanaka, M., New J. Chem., 13, 737 (1989)
  31. Maguire, J. A., Boese, W. T and Goldman, A. S., J. Am. Chem. Soc., 111, 7088 (1989) https://doi.org/10.1021/ja00185a031
  32. Sakakura, T, Sodeyama, T, Abe, F. and Tanaka, M., Chem. Lett., 297 (1991)
  33. Fujii, T and Satio, Y., Chem. Commun., 757 (1990)
  34. Fujii, T., Higashino, Y. and Satio, Y., J. Chem. Soc., Dalton Trans., 517 (1993)
  35. Aoki, T. and Crabtree, R. H., Organometallics, 12, 294 (1993) https://doi.org/10.1021/om00028a004
  36. Xu, W.-W., Risini, G. P., Gupta, M., Jensen, C. M., Kaska, W. C., Krogh-Jespersen, K. J. and Goldman, A. S., Chem. Commun., 2273 (1997)
  37. Jacobs, M. Ed., Chem. Eng. News, 75, 25 (1997)
  38. Moulton, C. J. and Shaw, B. L., J. Chem. Soc., Dalton Trans., 1020 (1976)
  39. Gordon, A. J. and Ford, R. A., Chemists Companion, John Wiley & Sons, New York (1972)
  40. Lee, D. W., Kaska, W. C. and Jensen, C. M., Organometallics, 17, 1 (1998)
  41. Morales-Morales, D., Lee, D. W., Jensen, C. M. and Wang, Z., Organometallics, 20, 1144 (2001)
  42. Lee, D. W., Jensen, C. M. and Morales-Morales, D., Organometallics, 22, 4744 (2003)
  43. Morales-Morales, D., Redon, R., Wang, Z., Lee, D. W., Yung, C., Magnuson, K. and Jensen, C. M., Can. J. Chem., 79, 823 (2001)
  44. Hidai, M. and Mizobe, Y., Chem. Rev., 95, 1115 (1995)
  45. Fryzuk, M. D., Love, J. B., Rettig, S. J. and Young, V. G., Science, 275, 1445 (1997)
  46. Yoshida, T., Okano, T., Thorn, D. L., Tulip, T. H., Otsuka, S. and Ibers, J. A., J. Organomet. Chem., 181, 183 (1979)
  47. Chatt, J., Dilworth, J. R. and Richards, R. L., Chem. Rev., 78, 589 (1978)
  48. Collman, J. P., Hegedus, L. S., Norton, J. R. and Finke, R. G., Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, pp. 190-192 (1987)
  49. Crabtree, R. H., The Organometallic Chemistry of the Transition Metals, 4th Ed., John Wiley & Sons, New York, pp. 440-446 (1994)
  50. Milstein, D., Calabrese, J. C. and Williams, I. D., J. Am. Chem. Soc., 108, 6387 (1986)
  51. Lunder, D. M., Lobkovsky, E. B., Streib, W. E. and Caulton, K. G., J. Am. Chem. Soc., 113, 1837 (1991) https://doi.org/10.1021/ja00003a037
  52. Edwards, A. J., Elipe, S., Esteruelas, M. A., Lahoz, F. J., Oro, L. A. and Valero, C., Organometallics, 16, 3828 (1997)
  53. Yoshida, T., Thorn, D. L., Okano, T., Ibers, J. A. and Otsuka, S., J. Am. Chem. Soc., 101, 4212 (1979)
  54. Errighton, R. J. and Shaw, B. L., J. Organomet. Chem., 238, 319 (1982)