Protective Effect of Curcumin and Aqueous Extract of Onchengyeum on CCI4-induced Hepatotoxicity

  • Published : 2005.12.01

Abstract

An aqueous extract of oriental herbal composition named Onchengyeum and curcumin, an antioxidant isolated from turmeric (Curcuma Zonga L.) reduced hepatotoxicity induced by carbon tetrachloride ($CCI_4$). Improved liver function was observed by measuring the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine (CRE), total cholesterol (T-CHO), triglyceride (TG), low density lipoprotein cholesterol (LDL-CHO), high density lipoprotein cholesterol (HDL-CHO), total protein (TP), albumin (ALB) and total bilirubin (BIL) in serum. Hepatic parameters monitored were levels of cholesterol (CHO), triglyceride (TG), and malondialdehyde (MDA) and activities of cytochrome P450 (CYP), NADPH-CYP reductase, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx). The histopathological examination showed that the treatment of Onchengyeum and curcumin relieved the ballooning degeneration of hepatocytes which had been generated by $CCI_4$. The results suggested that hepatoprotective effects of Onchengyeum and curcumin possibly are due to their promising antioxidative activity.

Keywords

References

  1. Aebi, H. (1974). Catalase Methods of Enzymatic analysis. 3rd ed, Verlag. Chemie. 2, 673-684
  2. Ahmed, R.S., Seth, V., Banerjee, B.D. (2000). Influence of dietary ginger (Zingiber officinales Rose) on antioxidant defense system in rat: comparison with ascorbic acid. Indian J Exp BioI 38, 604-606
  3. Antebi, H., Ribiere, C., Sinaceur, J., Abu-Murad, C., Nordmann, R. (1984). Involvement of oxygen radicals in ethanol oxidation and in the ethanol-induced decrease in liver glutathion. in : Bors, W., Saranm, M., Tait, D., eds. Oxygen Tadicals in Chemistry and Biology. New york., p.757-760
  4. Carlberg, I., Mannervik, B. (1985). Glutathione reductase. Methods Enzymol. 113, 484-490 https://doi.org/10.1016/S0076-6879(85)13062-4
  5. Comporti, M. (1993). Lipid peroxidation : An overview. In : Free Radicals: From Basic Science to Medicine(Molecular and cell biology updates), Poli, G, Albano, E., Dianzani, M.U. eds. Birkhause Verlag, Basel. Switzerland. p.65-79
  6. David, R.M., Nerland, D.E. (1983). Induction of mouse liver glutathione S-transferase by ethanol. Biochem. Pharmacol. 32, 2809-2811 https://doi.org/10.1016/0006-2952(83)90096-5
  7. Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys, 82, 70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  8. Freidovich, I. (1999). Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann. NY. Acad. Sci. 893, 13-18 https://doi.org/10.1111/j.1749-6632.1999.tb07814.x
  9. Fridovich, I. (1995). Xanthine Oxidase, CRC handbook of methods for oxygen radical research. CRC Press. New york
  10. Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974). Glutathione Stransferases. The first enzymatic step in mercapturic acid formation. J. BioI. Chem. 249, 7130-7139
  11. Ho, Y.S., Crapo, J.D. (1988). Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett. 229, 256-260 https://doi.org/10.1016/0014-5793(88)81136-0
  12. James, J.L., Moody, D.E., Chan, C.H., Smuckler, E.A. (1982). The phospholipids of the hepatic endoplasmic reticulum. Structural change in liver injury. Biochem. J. 206, 203-210 https://doi.org/10.1042/bj2060203
  13. Kaynar, H., Meral, M., Turhan, H., Keles, M., Celik, G., Akcay, F. (2005). Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dis mutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Lett. 227, 133-139 https://doi.org/10.1016/j.canlet.2004.12.005
  14. Koner, B.C., Banerjee, B.D., Ray, A. (1998). Organochlorine pesticide-induced oxidative stress and immune suppression in rats. Indian J. Exp. BioI. 36, 395-398
  15. Koo, B.H. (1997). Lexicologic Doneuibogam. Korean dictionary research p.187, 192
  16. Leu, T.H., Su, S.L., Chuang, Y.C., Maa, M.C. (2002). Direct .inhibitoryeffect -of curcumin on Src and focal adhesion kinase activity. Biochem. Pharmacol. 66, 2323-2331 https://doi.org/10.1016/j.bcp.2003.08.017
  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  18. McCay, P.B., Lai, E.K., Poyer, J. L. (1984). Oxygen-and carboncentered free radical formation during carbon tetrachloride metabolism. J. Biochem. 254, 2135-2143
  19. McCord, J.M. (2000). The evolution of free radicals and oxidative stress. Am. J. Med. 108, 652-659 https://doi.org/10.1016/S0002-9343(00)00412-5
  20. Niki, E. (1993). Antioxidant defenses in eukariotic cells: An Overview. In: Free radicals: From Basic Science to Medicine (Molecular and cell biology update), Poli, G, Albano, E., Dianzani, M.U. eds. Birkhauser Verlag, Vasel. Switzerland., p. 365-368
  21. Nong, J.H. (1986). Reprinting with additions of manbunghoychun. Jungkukkukwonsukongsa. last volume p.83
  22. Omura, T., Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature., II. Solubilization, purification, and properties. J. Biol. Chem. 239, 2370-2378
  23. Oruc, E.O., Uner, N. (2000) Combined effects of 2,4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol. 127, 291-296
  24. Park, S.S., Yeom, T.H., (1984). lecture of today's chinese(herb) medicine. Seoul Hanglim publishing company. p.185, 186, 204,507,518
  25. Piper J.T., Singhal S.S., Salameh M.S., Torman R.T., Awasthi Y.C., Awasthi S. (1998) Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in tat liver. Int. J. Biochem. Cell Biol. 30, 445-456 https://doi.org/10.1016/S1357-2725(98)00015-6
  26. Poli, G, Albano, E., Dianzani, M.U. (1987). The role of lipid peroxidation in liver damage. Chem. Phys. Lipids. 45, 117-142 https://doi.org/10.1016/0009-3084(87)90063-6
  27. Ray, A, Banerjee, B.D. (1998). Stress, free radicals and the immune response: modulation by drugs. Arch. Pharmacol. 358 (Suppl. 2), 739-744
  28. Recknagel, R.O. (1967). Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 19, 145-208
  29. Recknagel, R.O, Glende, Jr, E.A, Dolak, J.A, Waller, R.L. (1989) Mechanisms of carbon tetrachloride toxicity. Pharmacol. Ther. 43, 139-154 https://doi.org/10.1016/0163-7258(89)90050-8
  30. Sies, H., Akerboom, T.P. (1984). Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol 105, 445-451 https://doi.org/10.1016/S0076-6879(84)05062-X
  31. Song, H.J. (1984). The effect of Hwangryonhaedoktang on the immune response to sheep red blood cells. Wonkwang Univ. Oriental Med. J. 2, 195-206
  32. Strobel, H.W., Digman, J.D. (1978). Biological oxidations, microsomal, cytochrome P-450, and other hemoprotein systems, Methods in Enzymology: biomembrames, II. Academic press. New york p.89-96
  33. Svingen, B.A, Buege, J.A, O'Neal, F.O., Aust, S.D. (1979). The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation. J Biol. Chem. 254, 5892-5899
  34. Tappel, A.L. (1978). Glutathione peroxidase and hydroperoxides. Methods Enrymol. 52, 506-513 https://doi.org/10.1016/S0076-6879(78)52055-7
  35. Uchiyama, M., Mihara, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry. 86, 271-278 https://doi.org/10.1016/0003-2697(78)90342-1
  36. Y. Sun. L. W. Oberley. (1996). Redox regulation of transcriptional activators. Free Rad. BioI. Med. 21, 335-348 https://doi.org/10.1016/0891-5849(96)00109-8