Abstract
In this paper, the six sigma scheme together with the rigid-viscoplastic finite element method is employed to obtain the optimal metal flow lines of a hot forging according to the six sigma processes, i.e., five steps such as define, measure, analyze, improve and control. Each step is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator is used for analysis of the metal flow lines of the hot forging, manufactured by a hot press forging machine, under various conditions of major factors determined at each step. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are then used to find an optimal process and the optimal process with die is devised and tested. The comparison between the required metal flow lines and the experiments shows that the approach is effective for optimal process design in hot forging considering metal flow lines.