Toxicity of Nanomaterials and Strategy of Risk Assessment

나노물질의 독성과 위해성평가 전략

  • 박광식 (동덕여자대학교 약학대학)
  • Published : 2005.12.01

Abstract

Engineered nanoparticles exhibit a variety of unique and tunable chemical and physical properties. These unique properties make the nanoparticles central components and widespread potential applications in nanoindustry. However, the potential toxicities of nanoparticles have not been fully evaluated. Recently, the impacts of nanoparticles to human and environment became the emerging issue of toxicology. In this article, physicochemical properties and toxicities of carbon nanotube, fullerene, quantum dots, and other types of nanomaterials were reviewed and the strategy of risk assessment were suggested based on the frame of chemical assessment.

Keywords

References

  1. Ambade AV, Savariar EN and Thayumanavan S. Dendrimeric micelles for controlled drug release and targeted delivery, Mol Pharm 2005; 2(4): 264-72 https://doi.org/10.1021/mp050020d
  2. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP and Waggoner AS. Noninvasive imaging of quantum dots in mice, Bioconjugate Chem 2004; 15: 79-96 https://doi.org/10.1021/bc034153y
  3. Blundell G, Henderson WJ and Price EW. Soil particles in the tissues of the food in endemic elephantiasis of the lower legs, Ann Trop Med Parasitol 1989; 83(4): 381-385 https://doi.org/10.1080/00034983.1989.11812361
  4. Bosi S, Da Ros T, Spalluto G and Prato M. Fullerene derivatives: an attractive tool for biological applications, Eur J Med Chem 2003; 38(11-12): 913-923 https://doi.org/10.1016/j.ejmech.2003.09.005
  5. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D and Sioutas C. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain, Neurotixicology 2005; 26: 133-140 https://doi.org/10.1016/j.neuro.2004.08.003
  6. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M and Nie S. Luminescent quantum dots for multiplexed biological detection and imaging, Curr Opin Biotechnol 2002; 13: 40-46 https://doi.org/10.1016/S0958-1669(02)00282-3
  7. Churg A steven B and Wright JL. Comparison of the uptake of fine and ultrafine $TiO_2$ in a tracheal explant system, Am J Physiol 1998; 274: L81-L86
  8. Cui D, Tian F, Ozkan CS, Wang M and Gao H. Effect of single wall carbon nanotubes on human HEK 293 cells, Toxicol Lett 2005; 155: 73-85 https://doi.org/10.1016/j.toxlet.2004.08.015
  9. Cui D, Gao H. Advance and prospect of bionanomaterials, Biotechnol Prog 2003; 19(3): 683-692 https://doi.org/10.1021/bp025791i
  10. Dresselhaus MS. Nanotubes. Burn and interrogate, Science 2001; 292(5517): 650-651 https://doi.org/10.1126/science.1060379
  11. Englert N. Fine particles and human health: a review of epidemiological studies, Toxicology Letters 2004; 149: 235-242 https://doi.org/10.1016/j.toxlet.2003.12.035
  12. Feynman R. There is plenty of room at the bottom, Science 1991; 254: 1300-1301 https://doi.org/10.1126/science.254.5036.1300
  13. Gao X, Chan WC and Nie S. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding, J Biomed Opt 2002; 7: 532-537 https://doi.org/10.1117/1.1506706
  14. Gavillet J, Thibault J, Stephan O, Amara H, Loiseau A, Bichara Ch, Gaspard JP and Ducastelle F. Nucleation and growth of single-walled nanotubes: the role of metallic catalysts, J Nanosci Nanotechnol 2004; 4(4): 346-59 https://doi.org/10.1166/jnn.2004.068
  15. Gooding JJ and Shapter JG. Carbon nanotube systems to communicate with enzymes. Methods Mol Biol 2005; 300: 225-241
  16. Goodman CM, McCsker CD, Yilmaz T, and Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjugate Chem 2004; 15: 897-900 https://doi.org/10.1021/bc049951i
  17. Green M and Howman E. Semiconductor quantum dots and free radical induced DNA nicking, Chem Commun 2005; 121-123
  18. Guldi DM and Prato M. Excited-state properties of C(60) fullerene derivatives, Ace Chem Res 2000; 33(10): 695-703 https://doi.org/10.1021/ar990144m
  19. Guldi DM. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 2002; 31(1): 22-36 https://doi.org/10.1039/b106962b
  20. Hartog JJ, Hoek G, Peters A, Timonen KL, Ibald-Mulli A, Brunekreef B, Heinrich 1, tiittanen P, Wijnen JH, Kreyling W, Kulmala M and Pekkanen J. Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary hear disease, Am J Epidemiol 2003; 157: 613-623 https://doi.org/10.1093/aje/kwg021
  21. Holsapple MP, Farland WH, Landry TL, Monteiro-Riviere NA, Carter JM, Walker NJ and Thomas KV. Research strategies for safety evaluation of nanomaterials, Part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs, Toxicological Sci 2005; 88(1): 12-17 https://doi.org/10.1093/toxsci/kfi293
  22. Hussain SM, Hess KL, Gearhart JM, Geiss KT and Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol in vitro 2005. in print
  23. Jensen AW, Wilson SR, Schuster DI. Biological applications of fullerenes, Bioorg Med Chem 1996; 4(6): 767-779 https://doi.org/10.1016/0968-0896(96)00081-8
  24. Jia G, Wang H, Yan L, Wang X, Pei R, Van T, Zhao Y and Guo X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ Sci Technol 2005; 39: 1378-1383 https://doi.org/10.1021/es048729l
  25. Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H and Mittal JP Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes, Chem-Biological Interactions 1998; 114: 145-159 https://doi.org/10.1016/S0009-2797(98)00047-7
  26. Kennedy P and Chaudhuri A. Herpes simplex encephalitis, J Neurol Neurosurg Psychiarty 2002; 73: 237-238 https://doi.org/10.1136/jnnp.73.3.237
  27. Koziara JM, Lockman PR, Allen DD and Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors, J Control Release 2004; 99: 259-269 https://doi.org/10.1016/j.jconrel.2004.07.006
  28. Kreyling W, Semmler M, Erbe F, Mayer P, Takenaka S and Schulz H. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is sex dependent but very low, J Toxicol Environ Health 2002; 65A: 1513-1530 https://doi.org/10.1080/00984100290071649
  29. Kroto HW, Heath JR, Obrien SC, Curl RF and Samlley RE. C60: Buckminsterfullerene, Nature 1985; 318: 162-163 https://doi.org/10.1038/318162a0
  30. Kuhn KP, Chaberny IF, Masholder K, Stickler M, Benz VW, Sonntag HG and Erdinger L. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UV A light, Chemosphere 2003: 53: 71-77 https://doi.org/10.1016/S0045-6535(03)00362-X
  31. Lam CW, James JT, McCluskey R, and Hunter RL, Pulnomary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol Sci 2004; 77: 126-134 https://doi.org/10.1093/toxsci/kfg243
  32. Larson DR, Zifel WR, Williams RM, Clark SW, Bruchez MP, Wise FW and Webb WW. Water soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 2003: 281: 2013-2016 https://doi.org/10.1126/science.281.5385.2013
  33. Li J, Ng HT and Chen H. Carbon nanotubes and nanowires for biological sensing, Methods Mol Biol 2005; 300: 191-123
  34. Liu ZS, Tang SL and Ai ZL, Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells, World J Gastroenterol 2003; 9(9): 1968-1971 https://doi.org/10.3748/wjg.v9.i9.1968
  35. Lockman PR, Koziara JM, Mumper RJ and Allen DD. Nanoparticle surface charges alter blood-brain barrier intergrity and permeability, J Drug Targ 2004; 12: 635-641 https://doi.org/10.1080/10611860400015936
  36. Lu W, Tan YZ, Hu KL and Jiang XG. Cationic albumin conjugated pegylated nanoparticles with its transcytosis ability and little toxicity against blood-brain barrier, Intern J Pharmac 2005: 295: 247-260 https://doi.org/10.1016/j.ijpharm.2005.01.043
  37. Mazzola L. commercializing nanotechnology, Nature biotechnology 2003; 21: 1137 -1143 https://doi.org/10.1038/nbt1003-1137
  38. McCarthy TD, Karellas P, Henderson SA, Giannis M, O'Keefe DF, Heery G, Paull JR, Matthews BR and Holan G. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention, Mol Pharm 2005; 2(4): 312-318 https://doi.org/10.1021/mp050023q
  39. McGrath DV. Dendrimer disassembly as a new paradigm for the application of dendritic structures, Mol Pharm 2005; 2(4): 253-263 https://doi.org/10.1021/mp050047x
  40. Monteiro-Riviere N, Nemanich RJ, Inman AO, Wang YY and Riviere JE. Multi -walled carbon nanotube interactions with human epidermal keratinocytes, Toxicol Lett 2005; 155: 377-384 https://doi.org/10.1016/j.toxlet.2004.11.004
  41. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB and Lison D. Respiratory toxicity of multi-wall carbon nanotubes, Toxicol Appl Pharmacol 2005; 207: 221-231 https://doi.org/10.1016/j.taap.2005.01.008
  42. Nakamura E and Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience, Acc Chem Res 2003; 36(11): 807-815 https://doi.org/10.1021/ar030027y
  43. Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M and Hoylaerts MF. Passage of inhaled particels into the blood circulation in humans, Circulation 2002; 105: 411-414 https://doi.org/10.1161/hc0402.104118
  44. Oberdorster E. Manufactured nanomaterials (Fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ Health Perspect 2004; 112: 1058-1062 https://doi.org/10.1289/ehp.7021
  45. Oberdorster G, Oberdorster E and Oberdorster J. Nanotoxicology, An emerging discipline evolving from studies of ultrafine particles, Environ Health Perspect 2005; 113: 823-839 https://doi.org/10.1289/ehp.7339
  46. Peters A, Dockery D, Muller JE and Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction, Circulation 2001; 103: 2810-2815 https://doi.org/10.1161/01.CIR.103.23.2810
  47. Rahman O, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG and Schiffmann D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian Hamster embryo fibloblast, Environ Health Perspect 2002; 110: 797-800 https://doi.org/10.1289/ehp.02110797
  48. Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A and Moussa F. Cytotoxicity and phototoxicity of a dendritic C60 mono-adduct and a malonic acid C60 tris-adduct on Jurkat Cells, J Photochem Phtotobiol B: Biology 2002; 68: 157-162
  49. Renwick LC, Knoaldson K and Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine research, Toxicol Appl Pharmacol 2001; 172: 119-127 https://doi.org/10.1006/taap.2001.9128
  50. Salata OV. Applications of nanopaticles in biology and medicine, J Nanobiotech 2004; 2: 3-9 https://doi.org/10.1186/1477-3155-2-3
  51. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL and Colvin VL. Nano-C60 cytotoxicity is due to lipid peroxidation, Biomaterials 2005; 26: 7587-7595 https://doi.org/10.1016/j.biomaterials.2005.05.027
  52. Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, Muntoni E, Frairia R, Gasco MR, Eandi M and Zara GP. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line, Eur J Pharmac Biopharmac 2004; 58: 673-680 https://doi.org/10.1016/j.ejpb.2004.03.026
  53. Shi X, Majoros IJ and Baker JR Jr. Capillary electrophoresis of poly (amidoamine) dendrimers: from simple derivatives to complex multifunctional medical nanodevices, Mol Pharm 2005; 2(4): 278-294 https://doi.org/10.1021/mp0500216
  54. Shiohara A, Hoshino A, Hanaki KI, Ssuzuki K and Yamamoto K. On the cyto-toxicity caused by Quantum dots, Microbiol Immunol 2004; 48(9): 669-675 https://doi.org/10.1111/j.1348-0421.2004.tb03478.x
  55. Sinha Nand Yeow JT. Carbon nanotubes for biomedical applications, Trans Nanobioscience 2005; 4(2): 180-195 https://doi.org/10.1109/TNB.2005.850478
  56. Spruny KR. On the phusics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances, Toxicol Lett 1998; 96(97): 253-261 https://doi.org/10.1016/S0378-4274(98)00080-0
  57. Stearns RC, Paulauskis JD and Godleski JJ. Endocytosis of ultrafine particles by A549 cells, Am J Respir Cell Mol Biol 2001; 24: 108-115 https://doi.org/10.1165/ajrcmb.24.2.4081
  58. Tagmatarchis N, Shinohara H. Fullerenes in medicinal chemistry and their biological applications, Mini Rev Med Chem 2001; 1(4): 339-348 https://doi.org/10.2174/1389557013406693
  59. Thomas K and Sayre P. Research strategies for safety evaluation of nanomaterials, part II: Toxicological Sci 2005; 87(2): 316-321 https://doi.org/10.1093/toxsci/kfi270
  60. Valcarcel M, Simonet BM, Cardenas S and Suarez B. Present and future applications of carbon nanotubes to analytical science, Anal Bioanal Chem 2005; 382(8): 1783-1790 https://doi.org/10.1007/s00216-005-3373-3
  61. Warheit DB. Nanoparticles: health impacts? Materials todays 2004. Feb. 32-35
  62. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM and Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotube in rats, Toxicol Sci 2004; 77: 117-125 https://doi.org/10.1093/toxsci/kfg228
  63. Watson A, Wu X and Bruchez M. Lighting up cells with quatum dots, Biotechniques 2003; 34: 296-303
  64. Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S and Sueki K. In vivo biological behavior of a water miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity, Chem Biol 1995; 2: 385-389 https://doi.org/10.1016/1074-5521(95)90219-8
  65. Yang XL, Fan CH and Zhu HS. Photo-induced cytotoxicity of malonic acid[C60] fullerene derivatives and its metabolism, Toxicology 2002; 16: 41-46