Study on target erosion in rocking magnet sputtering system

  • Lee, Do-Sun (Dept. of Materials Science and Engineering, KAIST Daejeon) ;
  • Kwon, Ui-Hui (Dept. of Materials Science and Engineering, KAIST Daejeon, Samsung Electronics) ;
  • Lee, Won-Jong (Dept. of Materials Science and Engineering, KAIST Daejeon)
  • Published : 2005.12.01

Abstract

A high performance dual rocking magnet sputtering gun has been developed. The rocking magnet sputtering gun introduces full-face erosion by rapidly rocking the magnet in the region where the high plasma density is maintained. The newly developed dual rocking magnet sputtering gun whose target utilization was 77 percent achieved high performance in quality in the view of target utilization and target life-time comparing to the existing magnetron sputtering gun. The PIC-MCC target erosion simulation has been performed simultaneously. Comparing experimental target erosion profiles with simulated target erosion profiles, the simulation could estimate the tendency of the target erosion profiles but could not estimate an exact target erosion profile. If the simulation were improved more precisely, the cost reduction for the development of the multiple rocking magnet sputtering gun would be expected.

Keywords

References

  1. H. Barankova el al. U. S. Patent 6, 351, 075 B1, Feb. 2002
  2. U. H. Kwon, A Computational Study on Plasma generation and Film Deposition in a Large-Area Planar Magnetron Sputtering System, KAIST (2004)
  3. R. L. Necomb et al, U. S. Patent 6, 372, 098 B1, Apr. 2002
  4. R. Adam et al, U. S. Patent 6, 183, 612 B1, Feb. 2001
  5. J. Fu, U. S. Patent 6, 183, 614 B1, Feb. 2001
  6. Los Alamos National Laboratory Poisson Superfish Codes (www.lanl.gov)
  7. J. P. Verboncoeur el al, Comp. Phys. Comm. 87, 199 (1995) https://doi.org/10.1016/0010-4655(94)00173-Y
  8. V. Vahedi and M. Surendra, Comp. Phys. Comm. 87, 179 (1995) https://doi.org/10.1016/0010-4655(94)00171-W
  9. Y. Yamamura and H. Tawara, Atom. Data Nucl. Data Tables 62, 149 (1996) https://doi.org/10.1006/adnd.1996.0005
  10. D. W. Hoffman, J. Vac. Sci. Technol. A 3, 561 (1985) https://doi.org/10.1116/1.583027
  11. H. Harada et al, Jpn. J. Appl. Phys. 36, 884 (1997) https://doi.org/10.1143/JJAP.36.997
  12. Y. K. Yang, Surf. Coat. Technol. 37, 315 (1989) https://doi.org/10.1016/0257-8972(89)90112-6