International Journal of Kais. Special Edition December 2005

Performance Analysis of Web Service Architecture for Inter-AS
DiffServ-over-MPLS Traffic Engineering

Shanmugham Sundaram®, Youngsu Chae®, Young-Tak Kim °
Yeungnam University, KOREA

Abstract

In this paper, the performance of the WebService
architecture for QoS guaranteed connection provisioning in
inter-AS domain networks has been measured and analyzed
for service publish/inquiry, collection of NMSs ASBR
details, source routing by ingress NMS in constraint based
routing and connection establishment. From the analysis, it
has been found that, the connection between inter-AS
domain networks can be established within the usual time
limits of 3 seconds by the WebService architecture. Since
no standard solutions have been implemented in
Interdomain QoS provisioning, this performance analysis
assures WebService architecture as a promising solution and
can be easily implemented in the early stages of MPLS
network employment.

Keywords: Distributed NMS, QoS-guaranteed, DiftServ-
over-MPLS, interprovider QoS, DMTF CIM.

1. Introduction

Since there has been no standardized NNI signaling
mechanisms in the QoS guaranteed DiffServ-over-MPLS
inter-AS domain networks, WebService architecture
(WSDL, SOAP/XML messaging & UDDI registry) based
connection management has been proposed [1]. In real-time
multimedia service provisioning, there is constraint being
imposed on time taken to establish end-to-end connection in
inter-AS domain networks. The connection should be
established within certain time limits. But the WebService
architecture’s performance capability to establish end-to-end
connection within the usual time limits has not been
analyzed in the inter-domain traffic engineering.

For connection provisioning in real-time multimedia
services, the time constraint should be satisfied. This
constraint has created an importance to analyze the
WebService architecture, whether WebService functional
modules can deliver the connection establishment within the
usual specified time limits of 3 seconds for telephone
service.

This paper analyzes the WebService architecture
performance on (i) publishing/inquiring NMS services and
service end points to/from the service registry (WSDL) by

*This work has been supported by Yeungnam University IT Research
Center (ITRC) Project. :

"Dept. of Information and Communication Engineering

214-1, Dae-Dong, Gyeong-San, Gyeongbuk, 712-749 | Korea
shanmughams@yumail .ac.kr

“yschae@yu.ac.kr, ytkim@yu.ac.kr

NMSs or CNM, (ii) gathering the information of peer AS
domain’s ASBR (autonomous system boundary router)
ports, available bandwidth, and delay (SOAP/XML), and
(iii) end-to-end connection establishment (SOAP/XML) in
inter-AS domain networks on the calculated route, i.e. based
on CSPF. In this paper, we propose DMTF CIM based MO
design and implementation with hierarchical inheritance and
polymorphism for inter-AS domain traffic engineering.

The rest of this paper is organized as follows. In Section II
the related works are briefly introduced. In section III, the
Web service architecture design is explained. In section IV,
the Web service implementation is explained in detail, and
in section V, the performance of the WebService
architecture during connection establishment in inter-AS
domain networks is analyzed. In section VI, the conclusion
and future works are given.

2. Related Works
2.1 Web Services

Web service is being standardized by the World Wide
Web Consortium (W3C), and promises to provide a single
uniform software infrastructure to support a wide range of
distributed services. It provides the distributed computing
with interoperability between .application running in
different platforms and in different languages.

WebService share common set of open standard
technologies such as SOAP/XML, WSDL, UDDI [2] and
ebXML [3]. In WebService paradigm, as shown in Fig. 1,
there are three actors: (i) a service provider, (ii) service
requestor, and (iii) Service registry. The service provider
and service requestor can use any platform or programming
languages to interact each other and the messaging between
them would be SOAP/XML. The service registry could be
implemented either by using UDDI specification or ebXML
specification. The ebXML is basically an open XML-based
infrastructure enabling the global use of electronic business
in an interoperable, secure, and consistent manner by all
parties [3].

In DiffServ-over-MPLS traffic engineering, every
Network Management System (NMS), which manages an
autonomous system (AS), would register their service
offerings and other parameters in the common service
registry.

International Journal of Kais. Special Edition December 2005

Service Registry
(UDDI)

Publish Service
inquire Details

Registry

Service Provider 1

SOAP/XML

Client

Service Provider 'n’

Fig. 1. Web Service Components

The details are given in the Web Service Definition
Language (WSDL) [4] format. The clients or requestors can
inquire the registry and make corresponding service calls to
the service providers with the service end point. The Web
service can be used in two cases of inter-domain
networking: (i) DiffServ-over-MPLS service access by the
CNM to the service provider, and (ii) interaction among the
NMSs, as standard MPLS NNI signaling is not mature yet.

2.2 MESCAL - Solutions for interprovider QoS

The MESCAL [5] project which is funded by EU for IP
Premium Service project as the part of the IST program,
aims to propose solutions for the deployment and delivery
of inter-domain Quality of Service across the Internet. In
MESCAL based approach, the service providers (who can
have many inter-AS domain networks) co-operate each
other to set up QoS capabilities for building an end-to-end
QoS delivery chain. The provider can extend the
geographical scope of its QoS-based service offering (QC
classes) across multiple domains. The scope can be
expanded by finding and binding the appropriate peer’s
service classes. The Fig. 2 shows the QoS provisioning
model in MESCAL approach.

ExtendettQoS-class

o i3L08] pSIRe 3
o

Buffering Mechanisms

Fig. 2. MESCAL QoS Service Model

By the extended-QoS classes, the service provider can
offer service to the remote locations even when its network
infrastructure is not there. Mescal provides some operations
for building interprovider QC operations, such as QC-
advertisement, QC-discovery, QC-mapping, QC-binding &
QC-implementation. In our implementation and analysis,
the QC-advertisement and QC definitions of MESCAL
design are considered

2.3 DMTF-CIM

Distributed Management Task Force (DMTF) is an
industry consortium that develops, supports, and maintains
standards for systems management of PC systems and
products, to reduce total cost of ownership.

Table 1. CIM Core data model

CIM Schema MOF (Managed Object Format)
v2.10
CIM_Application | Software Feature, Software Element
CIM Core Managed Syste?m E!emftnt, Physical
— Elements, Logical Devices
CIM_Database Database Environment, Database Storage
. Power, Controllers, Processors, Logical

CIM_Device

Ports, Memory

Network Systems, Routing and Forwarding,

CIM_Network Routes, OSPF, SNMP

CIM_Physical Physical Packages, Physical Component,

Physical Capacity

Computer System, Local File System,
CIM_System Operating System, UNIX

SNMPTraplndication, AlertIndicatio,
CIM_Event IndicationHandler

The CIM is a conceptual information model defined by
DMTF for describing managed entities, their composition,
and relationships. CIM describes the contents and semantics
of manageable entities across an enterprise in an Internet-
friendly way. The management models are comprised of a
Core Model and a set of Common Models that extend from
the Core, which is shown in Table 1. Common models have
been defined for systems, services, networks, applications,
users, and databases. CIM is defined using a language called
Managed Object Format (MOF). MOF is a textual format
for describing an information model using an object-
oriented design. MOF is used to express the classes,
associations, aggregations, properties, and methods that are
part of the management domain. CIM schema is extensible
which reduces the class design time, compared to the design
from the scratch. The operations that are defined for CIM
are independent of the protocol used. In this paper, we used
CIM MOFs with extensions required for inter-AS traffic
engineering. To gather in the information between the
NMSs, we used Web service architecture.

3. Architecture of Web Service Based Distributed
Network Management System

-10-

3.1 WebService Architecture for distributed NMS for
DiffServ-over-MPLS TE

The distributed network management systems can be
implemented by using the standardized web service tools.
Each NMS which manages the underlying autonomous
systems is integrated by the Web service mechanisms. Each
NMS would publish the services it offers to the customers,
either peer domains or real customers. The CNM/NMS can
query registry about the other NMSs service details and can
make use of them for intra-AS domain connection
provisioning. The services can be defined in terms of
service class with each class having the unique network
parameters of bandwidth offered, jitter, and delay.

ASBR-10-A85R
TE-LSP Transit TE-LSP
Tor Yirtual Networks

Fig. 3. Web Service architecture based distributed NMS

The Fig. 3 explains the overview of the WebService
architecture based distributed network management system
for DiffServ-over-MPLS traffic engineering which has been
designed, and its performance is analyzed. Each NMS that
manages a domain registers their services to the service
registry (UDDI). For each service class type the NMS offers,
there can be many LSPs available. The details of the
corresponding ingress/egress IP also need to be published to
the service registry, in case of making multiple paths for
handling faults. The service details and the service enquiry
points (i.e., service access points) are described in the Web
Service Definition Language (WSDL) and published in the
registry. The data actually transferred during publish/inquiry
are in XML format.

3.2 Interaction sequence for creating end-to-end QoS
guaranteed service with CSPF routing

For the connection establishment across multiple AS
domain network, firstly the ingress NMS must find the
shortest path route that satisfy the requested constraints. Fig.
4 depicts an example of route computation. The NMS of the
ingress AS domain network, to which the connection
establishment requester (user A) is connected, and performs
source routing. It finds the URL and related MIB/MIT
contact points of the AS network to which the destination

International Journal of Kais. Special Edition December 2005

terminal or site (user B) is connected, and retrieves the
ASBR port list. Then, it confirms the connectivity and
availability of the requested bandwidth from the egress
NMS. Also the neighbor AS networks (i.e., intermediate AS
domains) of the egress AS domain are searched, and their
ASBR ports are evaluated. The constraint-satisfied shortest
path is selected.

Fig. 4. Constrained based shortest path routing

This procedure is repeated until the ingress AS domain is
reached through multiple possible routes. Finally, the call
requesting user can be connected to a port of the ingress AS
domain network. For fault restoration, the working path and
the backup path are individually processed, with SRLG
(shared risk link group) constraint. The collection of all
network resource information for CSPF route calculation
depends on the network topology and the number of AS
networks along the route.

4. Implementation

The implementation of inter-AS TE involves many steps.
Since DMTF's CIM network model does not provide all the
necessary MOFs to represent the MOs for inter-AS TE, we
extended the existing CIM for representing the DiffServ-
over-MPLS TE. The MOFs (i.e., CIM with extensions) is
converted to java class files by using the MOF compiler
{131 mof2bean that is provided for WBEM solutions.

The NMS uses the java files created by mofZbean
compiler. Then NMS generates WSDL file for the service it
is offering, and publishes the WSDL URL reference to the
service registry. All the NMSs would do the steps of
publishing of their available transport service provisioning,
as mentioned above. Whenever it is required, the NMS
would query the service registry (stored in UDDI), retrieve
the contact points of each AS domain networks, and make a
WebService request to other NMSs.

Fig. 5 shows the implementation sequence of MO
creation from the extension of DMTF-CIM, WSDL creation,
publishing, retrievals of contact points of available services,
and request via XML/SOAP.

-11 -

International Journal of Kais. Special Edition December 2005

DMTF-CIM J

Mof2bean

request via
XML/SOAP

Fig. 5. MO creation and management

4.1 Implementation of CIM-based MO

The CIM MOF schema has been used to implement and
design Managed Objects. The MO design with hierarchical
inheritance and polymorphism among MO classes will
make easy implementation of new MOs for new
management function with reusable common information of
base MO, as the object-oriented design approach provides.
Fig. 5 depicts the basic structure of inheritance for basic
MOs in inter-AS traffic engineering. The MOFs NMS,
MPLSNetService, MPLSNetwork, ASBRMPLSRouter,
ASBRMPLSRouterService, and ASBRPort.

Fig. 6 show the detailed attributes and actions of MOFs
designed for inter-AS traffic engineering purpose. NMS has
all the layered network objects and it will handle them. Also
NMS has several attributes like ServiceRegistryURL,
ListOfNeighborService, ListOfIntraService,
targerServiceURL. ServiceRegisryURL attribute holds the
address of UDDI registry and it could be used while
publishing and inquiring. In the proposed Web service
architecture, private UDDI was used for security. Since it is
private UDDI, only registerd NMSs could access the UDDI
registry. ListOfNeighborService attribute holds WSDL URL
information of the neighbor NMS. It could be a collection
type. When NMS needs to make Web service request to the
neighbors, it does not need to inquire UDDI for the details.
Instead, it can directly make a request by using
ListOfNeighborService attribute. This reduces the proessing
time by avoiding UDDI registry inquiry to gather the
neighbor details. ListOfIntraService attribute has the details
of services which one NMS can publish to the UDDI
registry. TargetServiceURL attribute has the specific
neighbor WSDL URL for which the Web Service request
can be made. The ASBRPort class has several attributes to
represent the port status.

Table 2. Extended CIM MO actions

NMS MPLSNetSendce:
zﬁgfgmm N SestablishTE_LSP()
&QoSDiffSerwN Sdelete TE_LSPQ" -
S00SVPN deleteAlLSPQ - . *

A R *CSPFforintraAS(
&SeniceRegistryURL ptiiaiatads SN
ListOMNeighborSenice e e
&lListOfintraSenvice ak
&targetServiceURL
SpublishSenvice() MPLSNetwork |
. ¥deleteService() A &listLSPs .
*modifySenice() &countOFL.SP
*InquireSenvice() listTunnel
SNC_setup() &MPLSRouter
SCSPForinterAS() -
%updateNeighborSenvice() :
*EMS_setup()

ASBRMPLSRouter
&listOF Port
ASBRPort &ilistOF neighborNode
%merhceAddress . 7
ortType -
gtotamapacjgy/ L
availableBandwidth
&reservedBandwidth ASBRMP\‘,}?: outerSer
&propagationDelay
h :
Sjtter SgetASBRPortinf()
*setASBRPortinf()

Fig. 6. Extended CIM classes for inter-AS TE

Action on MOs | Description
. . Publishing NMS Service to service
publishService .
registry
4 . Deleting the NMS Service from
eleteService . .
service registry
. . Update the existing service with
modifyService nepw details in th servgice registry.
. . Gather other NMS service from the
InquireService . .
NMS service registry .
Establish connection for inter-AS
NC_Setup domain network. Requested by
CNM.
CSPFEforlaterAS For inter-AS CSPF computation
updateNeighborSe | Maintain the neighbor service
rvice details in the local cache
EMS._setup Establis_h connection in the
- underlying managed sub-network
establishTE_LSP Establish TE_LSP
MPLSNetSer | deleteTE LSP Remove the established TE_LSP
vice deleteAIILSP Remove all established TE LSP
CSPFforlntraAS For intra-AS CSPF computation
ASBRMPLS | getASBRPortInf Gather ASBR port information
Routel;Serwc setASBRPortInf Set ASBR port information

Table.2 shows explanation of necessary actions with the
corresponding MOFs. The publishService action of NMS
MO is used to publish NMS service to the service registry
with the details of ListOfIntraService. DeleteService action
is used to delete the service, when there is no availability of
the registred service. ModifyService action is for modifying
the existing service which was already registered. This may
be due to changes happening in the existing service.
InquireService action is used by NMS to gather other NMS
service from the service registry. These inquired details will
be saved in the ListOfNeighborService attribute and will be
used in future. NC_Setup action is used to create connection

-12 -

in inter-AS domain network and it will be used by the CNM.

When this is called, it makes CSPF computation. This will
result to gather ASBRport information of other NMS by
making Web service request. The updateNeighborService
action is used store the neighbor service details in the local
cache for the future use. The EMS_setup will be used to call
the EMS for establishing the connection in the intra-AS
domain network. The establishTE_LSP, deleteTE_LSP, and
deleteAlILSP actions are used to handle the TE LSP
connections in the underlying domain network. In
ASBRMPLSRouterService class has overloaded actions to
gather the ASBR port information. When getASBRPortInf
action with single parameter of portAddress is passed, it
would gather the local ASBR from the managed NMS.
When it is called with two parameters (with the collection
attribute), it makes Web service request to peer AS and
passes the ASBR information in the collection. The
setASBTPortInf action would set the ASBR port
information

4.2 Implementation of NMS

The NMS has been implemented by Java 5 SDK for GUI
part, C++ as the backend core, and the open source software
toolkits such as Apache Axis (for java 1.2) [7], and Tomcat
5.0 [8] (as Web service container) for the Web service part.
The MO classes are obtained by compiling CIM MOF by
mof2bean compiler [9]. Every NMS has both client and
server part for the Web service implementation. Fig. 7.
shows the NMS with WebService tools implementation.
The JAXR APIs are used for both Web services publishing
and inquiring. The dynamic invocation interface (DII)
method is used to invoke the Web service call from the
remote NMS. The interactions among NMSs are in
SOAP/XML over HTTP.

—— Woeb Senice invacation

i forinter-AS service -~ Service Registry Inquiry/Publish

g details

¢ Private Service Registry\‘

7 NMS for
neighbor AS-:

NMS for AS-1
Web Service Funclions

N

;

P .
3 N) i
Web Servce implementation & £
t o ivogetion (DT L

g J
" ¥ }

+ (Regiry 8.1
o Nalifcation Fondier), g

Servich Dbtalls,
Cache, fran

|

- soapnm —}-soaPnoa —}-soaPIML

[Amieiuinduien gy ey
1 EMS b + EMS]] EMS i
_______ 4 3 i

Fig. 7. NMS with Web Service — overview

The Java API packages have been built for handling the
service inquiring, publishing to the service registries. Other
packages are developed for (i) the client/service
implementation of the Web service, (ii) registry handling,

International Journal of Kais. Special Edition December 2005

(iii) cache for service registry information, and (iv)
performance analysis test cases. The integrated development
environment has been Netbeans 4.1, and Borland’s JBuilder
X with Java 5 SDK.

4.3 Implementation of Service Registry

The service registry is configured by Sun Java system
application server 8.1[10] and the Java Web Services
developer pack (JWSDP) 1.6 [11]. Service registry has been
implemented with ebXML 3 specification. The database
used by service registry is Derby.

All the NMSs register themselves to the service registry
through the web interface. NMS can either
programmatically or manually publish their details to the
registry. For publishing details in the service registry, user
account need to be created and for every update in the
registry, the user has to be authenticated by X.509
certificates. The keytool provided by JAVA SDK is used for
making the X.509 certificates in a keystore file.

5. Performance Analysis of Web service Architecture
5.1 Distributed NMS test bed setup

The distributed NMSs have been setup with a single
service registry, five NMS systems and two CNM systems
as shown in Fig. 3. There are three cases considered for the
analysis and the performance of the WebService
components for delivering the requests/response. The
performance details are measured and plotted in the graphs
shown below.

5.2 UDDI Registry — Service Publish/Inquiry

The first case, the time taken for the NMS to publish the
service details to the service registry is measured and is
shown in Fig. 8. The details of service contact points, and
network parameters are registered along with the
ingress/egress IPs. The measurements are in milliseconds.
The service publishing involves two main activities: (i) user
authentication, and (ii) storing the details in the Derby
database by the registry.

Time taken jm3)

Fig. 8. Time taken by NMS for subsequent publishing to the
service registry

-13 -

International Journal of Kais. Special Edition December 2005

The time taken to publish details to the service registry in
the first request is high (say 1800 ms). This is because of the
user authentication step involved while setting up
connection with the service registry. The user authentication
is done by using X.509 user certificates. The subsequent
interactions does not involve user authentication and only
database search is made. It has also been found that on the
average it takes 800 ms. There is always an initial setup
delay which is unavoidable (i.e., in terms of authenticating
the user and database search).

Thina taken {Mms)

Fig. 9. Time taken by NMS for subsequent inquiries

The second case, the time taken to inquire the service by
the NMS is measured and is provided in Fig. 9. During
connection establishment, the NMS contacts the service
registry to gather the service details and the service contact
points of the other NMSs. The inquiry to the registry does
not involve any user authentication. The service registry just
does the database search for the registry objects being
requested by the NMS. The matched registry objects are
populated and sent to the requested client. On the average,
the inquiry takes 130 ms.

Time taken {(ms)

1 2 3 4 5 6 7 8 g 10
Web Service requests
Fig. 10. Time taken for NMS-NMS Web services interaction.

The final case, the time taken to make a service call
between the peer NMS systems are measured. When NMS
needs to find the other NMSs details (ASBR, availability
bandwidth, and the delay for the specified DiffServ class

type), it will make a Web service request and gets the details.

Fig. 10 depicts the scenario of this NMS-NMS Web service

interaction. They are comparatively faster than other test
cases, and on the average it takes around 20 ms.

5.3 CSPF Routing

Fig. 11 shows the CSPF routing performance time. This
CSPF routing computation process includes one UDDI
Query, four Web service requests and Dijkstra computation.
On the average, it takes 218 ms for CSPF computation. If
each NMS has multiple neighbor NMS, it could make
scalability problem during CSPF computation. To solve the
scalability issue, getASBRPortInf action can make threaded
Web service request to each of the connected neighbors.

8 88

»y
=2
o

Time taken (ms)
Il
S

g B

8

1 2 3 a4 § 6 7 8 8 10
CSPF Routing

Fig. 11. CSPF computation
5.4 End-to-End Connection Establishment

Fig. 12 shows the overall picture of the performance of
the WebService architecture for end-to-end connection
provisioning in the DiffServ-over-MPLS TE. From the
analysis, it has been found that the connection establishment
in inter-AS domain could be made within the usual time
limits of 3 seconds.

1]
0
i
. 50
L
; 0
30
X0
it}
1]

Publish Renuest ety LBPF Rouding Lonmection

Esisbishment

WebService Functions

Fig. 12. End-to-end connection establishment

The performance of the Web service architecture for end-
to-end QoS guaranteed service provisioning in DiffServ-
over-MPLS TE can be improved by avoiding the service
registry interactions as much as possible. This can be done

-14 -

by building a local cache in NMS, which resembles details
in the registry. When NMS is starting up, it gathers the
registry details and builds the local cache. This local will be
consulted by each & every service request and the
corresponding NMS will be contacted, thereby avoiding the
service registry interaction. The implementation of
Notification mechanism in the NMS will also reduce the
interaction between the NMS and service registry. This
makes the NMS not to query the service registry for the
updates, instead, it will become service registry’s
responsibility for updating the NMS, whenever there is any
change, and that kind of changes has been interested by the
NMS.

6. Conclusion

The performance of WebService architecture based
distributed network management system for QoS guaranteed
end-to-end DiffServ-over-MPLS TE has been studied and
analyzed. We have proposed CIM extensions for inter-AS
traffic engineering. By using the WebService, the QoS
guaranteed end-to-end connection between inter-AS domain
networks could be established within the usual time limits
of 3 seconds. There are other distributed computing
architectures like CORBA or RMI that can be used for the
interprovider QoS. RMI has a limitation that it is not
interoperable between applications running in different
languages. CORBA is more like client/server driven and the
applications are tightly coupled. WebService overcome
these drawbacks and proves itself a promising candidate for
interprovider QoS.

Some fine tunings are required to be done in the areas of
WebService client side implementation, which will
definitely improve the performance of the system. The
future plans are to improve the performance of the system
by (i) design and implementation of cache system, (ii)
design and implementation of subscription notification
system, so that whenever there is any change in the service
registry, the NMS will be notified with the changes.

References

[1] Youngtak Kim, Hyun-Ho Shin, "Web Service
based Inter-AS Connection Managements for
QoS-guaranteed DiffServ-aware-MPLS
Internetworking,” Proc. of International
Conference on Software Engineering Research,
Management & Applications (SERA 2004), San
Francisco, pp. 256-261.

2] http://www.uddi.org/.

[3] hitp://www.ebxml.org/specs/index.htm.

[4] http://www.w3.org/TR/wsdl.

[5] hitp://www.mescal.org/presentations/mescal-
introduction.pdf.

[6] The Java Web Services tutorial
http://java.sun.com/webservices/docs/1.6/tutorial/doc/
index.html

International Journal of Kais. Special Edition December 2005

7] The Apache User Guide
http://ws.apache.org/axis/java/user-guide.html

[8] http://jakarta.apache.org/tomcat/.

9] http://www.sun.com/software/xml/developers/jaxb/.

[10] Sun java system application server 8.1

http://java.sun.com/j2ee/1.4/download.html.
[11] http://java.sun.com/webservices/jwsdp/index.jsp.

[12]

Netbeans Quick start
http://www.netbeans.org/kb/41/quickstart.htm].

guide

Shanmugham Sundaram is a Ph.D.
candidate in Information and
Communication Engineering at the
Yeungnam University, Kyoungsan,
Korea. His research interests are in the
areas of Qos-guaranteed DiffServ-over-
MPLS, sensor networks, and distributed
computing. He received his M.C.A from
the Bharathiyar University (India) in 1996.

Youngsu Chae received the B.S. and
the M.S. degrees in computer science
from Pohang University of Science and
Technology, Pohang, Korea, in 1994
and 1996, respectively. He is currently a
faculty member of School of EECS,
Yeungnam University, Kyoungsan,
Korea. His research interests include
mobility management and QoS support in mobile networks,
large scale Internet service architecture, and 4G networks.

Young-Tak Kim is a professor in the
school of electrical engineering and
computer science (EECS) of
Yeungnam University, Korea. He
graduated Yeungnam Univ. in 1984,
and received Master Degree and Ph.D.
degree from KAIST (Korea Advanced
Institute of Science and Technology)
in 1986 and 1990, respectively. He
joined Korea Telecom (KT) in March 1990, where he had
researched and developed an ATM Metropolitan Area
Network (MAN) Switching System (ATM-MSS). He
transferred to Yeungnam University in September 1994. He
has performed many research projects in the area of “High-
speed Telecommunications Networking” and “Network
Operations and Management.” Currently he is the director
of government supported University IT Research Center
(ITRC) which is developing “QoS-guaranteed Traffic
Engineering and Multimedia Service Platform in the
Broadband convergence Network (BcN).” His research
interests include QoS-guaranteed inter-AS traffic
engineering and broadband mobile Internet service
provisioning on a broadband converged wired & wireless
network environment. Prof. Young-Tak Kim is a member of
IEEE Communication Society, KICS (Korea Institute of

-15-

International Journal of Kais. Special Edition December 2005

Communication Society), KISS (Korea Information
Society), KIPS (Korea Information Processing Society), and
Korea Multimedia Society. He has been working as an
organization committee member of APNOMS (Asia Pacific
Network Operations and Management Symposium), and
IEEE NOMS-2004 (Network Operations and Management
Symposium).respectively. He is currently a faculty member
of School of EECS, Yeungnam University, Kyoungsan,
Korea. His research interests include mobility management
and QoS support in mobile networks, large scale Internet

service architecture, and 4G networks.

-16

