JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2005(pp. 1605-1612)

Simulation-based Design Verification for
High-performance Computing System

Taikyeong T. Jeong

ABSTRACT

This paper presents the knowledge and experience we obtained by employing multiprocessor systems
as a computer simulation design verification to study high-performance computing system. This paper
also describes a case study of symmetric multiprocessors (SMP) kernel on a 32 CPUs CC-NUMA
architecture using an actual architecture. A small group of CPUs of CC-NUMA, high-performance
computer system, is clustered into a processing node or cluster. By simulating the system design
verification tools; we discussed SMP OS kernel on a CC-NUMA multiprocessor architecture performance
which is 32% of the total execution time and remote memory access latency is occupied 43% of the
OS time. In this paper, we demonstrated our simulation results for multiprocessor, high-performance
~computing system performance, using simulation-based design verification.

Keywords: High-performance computing, Multiprocessor, Simulation, Design verification

1. INTRODUCTION

In principle, methodologies for computer sys—
tem performance studying fall into two catego-
ries: analytical modeling and quantitative tech-
niques[1]. Analytical modeling, although fast
and flexible, frequently makes some assump-
tions and simplifications when employed on real
but complex systems. Sometimes these sim-
plifications and approximations may nebula the
realistic system performance picture and occa-
sionally lead incorrect results. On the other
hand, quantitative techniques provide alter-
natives in performing system performance stud-
ies in a more accurate and detailed style. One
guantitative method is hardware prototyping: a
technique that uses dedicated hardware to gen-
erate non-invasive data at high speeds[2].

Additionally, the special purpose design ver-
ification tools and system cannot be easily port-

¥ Corresponding Author : Taikyeong T. Jeong, Address:
Texas at Austin, Austin, TX 78712 USA. And, now he
is with the University of Delaware TEL : +1-512-786-
6402, E-mail : ttjeong@alumni.utexas.net

Receipt date : Oct. 14, 2005, Approval date : Nov. 29, 2005

ed to those systems with different architecture.
Simulation_ is another quantitative approach fre-
quently exploited by today’s computer archi-
tecture researcher to investigate ideas and po-
tential designs[2]. Compared with its hardware
counterpart, software simulation is slower, but
more flexible. A lot of simulation tools have been
designed to support various simulations ranging
from simple trace-driven simulation based on a
direct mapped cache to the cycle-by-cycle sim-
ulation of the pipeline execution of one super-
scalar microprocessor[3].

Unfortunately most of them focus on and can
only deal with one functional unit simulation of
a computer system, e.g., cache, pipeline, main
memory unit, hard disk and interconnection
network. Furthermore, these simulators are fre—
quently driven by some kind of traces instead
of the realistic workloads. As a result, these
tools cannot be used to study complete computer
system behaviors with complex workloads, such
as OS-intensive commercial software tool, op-
erating systems, and compilers. We demon-
strated that SMP kernel on a 32 processors
CC~-NUMA architecture which is an example of

1606 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2005

high-performance computer system. To show a
simulation-based design verification method, we
show an architectural overview and extend our
simulation results through simulated machines.

The paper is organized as follows. Section II re-
views preliminaries on architectural platform. A
design methodology for simulation environment is
in Section III. Section IV shows a detail result with
a simulation-based design verification method.
Section V summarizes this work.

2. ARCHITECTURES

In this section, we present simulation-based
design verification for multi-core architecture as

a case study.

2.1 SMP and CC-NUMA Architecture

We involve two kinds of shared memory mul-
tiprocessors architectures, namely symmetric
multiprocessors (SMP) and CC-NUMA (Cache
Coherence Non-Uniform Memory Access) multi—
processors.

In a SMP system, each processor (with its
private cache) is connected with shared memory
by system interconnection (usually bus or hier-
archy multi-bus). Each CPU is symmetric to the
shared memory from the perspective of memory
accesses. Whenever a cache miss occurs, the
corresponding memory request will be handled
across the shared bus. Snoopy-based protocols
are frequently used in SMP to maintain coher—
ence between CPU private caches[4]. With the

interconnection
CPU !
Cache i

Fig. 1. An Overview of SMP Architecture.

Shared Memory

increase of CPU and cache pair numbers, the
shared bus will be the bottleneck.

In general, the SMP system is not scalable
and can support only a small number of CPUs.
Fig. 1 shows an overview of SMP architecture.

In CC-NUMA architecture, a small group of
CPUs is clustered into a processing node or
cluster[5]. The global shared memory is physi-
cally node or cluster. Also, the global shared
memory is physically distributed in each proc-
essing node. In fact, each processing node can
be regarded as a SMP with a small CPU number.
When a cache miss occurs, it can be satisfied
in local shared memory (portion of shared mem-
ory within the same processing node) or in re-
mote shared memory (portion of shared memory
distributed in other processing nodes). There are
two kinds of memory access modes. local mem-
ory access and remote memory access. In this
case, remote memory access IS Imore expensive
since it will generate more traffic in both local
bus and system interconnection.

In addition, potential processing node commu-
nications, such as cache coherence maintenance
operations, may also be caused by remote access.
Some dedicated hardware is used to handle re-
mote memory access. A directory- based cache
coherence protocol is frequently used in CC-
NUMA architecture to maintain coherency caches

among processing nodes. Fig. 2 shows the block

diagram of CC-NUMA multiprocessors.

Fig. 2. A Block Diagram of CC-NUMA Architecture.

Simulation-based Design Verification for High-performance Computing System 1607

2.2 SMP OS Kernel Architectures

A SimOS-ported SMP OS kernel was used to
perform a case study of architectural behavior
under multi-programmed workloads. In this
case, IRIX 5.3 kernel is executed for SMP OS
kernel which is originally from SGI's im-
plementation of NIX SVR4. A user process can
be dynamically trapped into the kernel via sys-—
tem call. The IRIX 5.3 kernel supports multiple
thread control. In the kernel, all control flows are
treated and scheduled as threads[6].

In the user space, one or several user threads
created by a single UNIX process is scheduled
and executed as a lightweight process (LWP).
In the OS kernel, a corresponding kernel thread
is generated for each user LWP. This kernel
thread takes the responsibility to execute kernel
code when a system call in the corresponding
LWP occurs. Some kernel threads are created
for special purp'()se, e.g., handling interrupts and
providing network file system (NFS) services.

Consequently, these kernel threads have no
LWP associated with them. Therefore, kernel
threads are selected from a ready queue and dis—
patched in priority order on the pool of available
processors by the scheduler.

In an IRIX 5.3 ported SMP OS kernel, we as-
sumed that the scheduler assumes all processors
are equivalent and all threads are executed as
a logic processor and/or LWP. Fig. 3 shows the
architectural view of SMP OS kernel.

In the multiprocessor architecture, memory
operations issued by one processor may be de—
layed or reordered when observed by other pro—
cessors within the same system. In this case,
synchronization primitives should be used to
protect memory access to shared data. Like their
counterparts, kernel threads synchronize via a
variety of synchronization primitives, such as
mutual exclusion locks, condition variables,
and/or counting semaphores. SGI has already
tuned IRIX 5.3 to run effectively on machines

Processor
Interconnection

CPU
Fig. 3. SMP OS Kernel Architectures.

with as many as 36 processors (SGI Challenge
machines)[7].

Moreover, in the SMP OS kernel, the virtual
memory management routines divide an address
space into a set of segments. Each segment
presents a chunk of virtual memory. Page faults
associate segments with the physical page in the
following way: If the requested page is backed
by vnode (data structure used to memory-map
the file in the OS), the vnode operation will hit
page cache and feed it to the segment. Otherwise,
vnode allocates an empty entry in the page cache
and starts I/O operations to load the appropriate
page and call OS routine to set up a memory
module unit translation, such as TLB replace-
ment, TLB refill and etc. Since the SMP treats
the shared memory space symmetrically, the
kernel does not ensure that processes scheduled
on a particular processor are placed in a partic-
ular location of shared memory that is faster to
access from that processor.

3. SIMULATION ENVIRONMENT

Considering a set of different architectures,
we present a simulation environment of simu-
lation-based design verification methods for

multi-core processors

1608 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2005

3.1 Architecture of Simulated Machine

SimOS is configured as a 32-processor
CC-NUMA machine. Our simulated machine
can be regarded as a prototype of DASH (4CPU
per memory). Table 1 summarizes the hardware
configuration for our simulation.

The NUMA memory model of SimOS is cus-
tomized for simulating the memory system of a
CC-NUMA multiprocessor with invalid-based
directory scheme. The number of memo-
ry/directory controllers can be configured to
model different memory configurations ranging
from SMP to CC-NUMA. Having only one
memory/directory controller would make it sim-
ilar to a bus-based machine. A number of mem-
ory/directory controllers which is smaller than
the number of CPUs would result in a memory
system similar to the DASH. Having the number
of memory/directory controllers equal to the
number of CPUs would result in architecture
similar to the FLASHI9] or MIT Alewife[8]

machine.

Table 1. Hardware Configuration for Simulation.

Table 2 shows the major parameters of
CC-NUMA simulated machine model used in
the simulation. A L2 cache miss which can be
satisfied by local memory has a 225ns delay. In
this case, the remote access has two situations:
if the remote access requires a memory block
that is clean in the home node’s memory, the la-
tency is 725ns. Otherwise, an additional access
is required to retrieve the exclusive copy from
the third processor’s cache which has the dirty
copy of that cache line, and will have 975ns
delay. Therefore, the CC-NUMA multiprocessor
which contains 32-processor can be simulated
by this design verification tools and verification
methods.

Table 3 also compares the local and remote
access time of several commercial systems with
the CC-NUMA multiprocessor model. In this
case, the latency ratio of local and remote access
of our CC-NUMA model is similar to most com-
mercial CC-NUMA systems. Because the com-
parison results of local memory and remote

Hardware Type

Performance Characteristics

32 Processors

MIPS R4000 at 200 MHz

32 1-level instruction caches

32KB, 2-way, 64byte block size

32 1-level data caches

32KB, 2-way, 64byte block size

32 2-level unified caches

1MB, 2-way, 128byte block size

256 MB Memory

32MB for each cluster

8 memory/Directory Controllers

Accurate NUMA model(225 ns min latency, 725 ns of remote node)

1 Disk

Accurate model of HP97560 SCSI-I disk

Table 2. Parameters of NUMA model.

Type of Access Latency
L2 ‘cache hit 50 (ns)
Bus Operation from processor to local directory controller 75 (ns)
Occupancy of directory controller on outgoing remote miss 100 (ns)
Qccupancy of local directory controller on remote miss 25 (ns)
Occupancy of remote -directory on remote miss 350 (ns)
Occupancy of local directory controller on incoming remotes 25 (ns)
Latency for the directory controller to fetch a cache line from local memory 50 (ns)
Fixed latency for going between directory controller (across the network) 150 (ns)
Dirty penalty 250 (ns)

Simulation-based Design Verification for High-performance Computing System 1609

memory are indicated quite similar range, we
could utilize these data as a simulation-based

design verification tools.

3.2 Software Environment

We use a release of IRIX 5.3 multiprocessor
that has been ported to the SimOS simulation
environment to perform this case study. IRIX 5.3
kernel is developed and well tuned for SGI
Power 4D/340 and Challenge machines, two
kinds of bus-based multiprocessors..Due to the
limitation of this SMP OS system, two assump-—
tions have been made: Firstly, all I/O devices are
connected at cluster 0. In our simulated ma-
chines, a SCSI-I (HP97560) disk services all of
the 32 processors. Secondly, unlike some
NUMA -like operating system that distributes n
data and code in a round robin way across clus—
ters, IRIX 5.3 allocates contiguous physical pa-
ges for its code and data from low memory
address. Therefore, most OS code and data
structures are allocated on cluster 0.

4. SIMULATION RESUTLS

In this section, we discuss an implementation
of a multiprocessor system as it relates to the
OS and kernel.

4.1 Design Verification for Multiprocessors

Cycle-by-cycle functional simulation can
provide accurate test results. However, the
speed of this kind of simulation is very slow, es—
pecially for large and complex multiprocessor

systems with real workloads. Thus, how to

make trade offs between simulation speed and
accuracy becomes an important issue of this
study. Our simulation technology, which em-
ploys speed-accuracy trade-off mechanisms, is
described here. The first step of our simulation
is to configure the simulated machine and cus-—
tomize statistics collection and reporting
mechanisms. TCL scripts can be used to cus—
tomize simulated machine architecture and to
map low-level machine behavior to higher-level
abstraction. SimOS emulation mode is used to
boot the OS and mount workload disks from the
host machine file system to the simulated ma-
chine by taking the advantage of the high-speed
of this mode. Rough characterization mode is
then used to perform cache ‘warm up' and to
past all uninterested initialization part of the
multi-programmed workloads. After the steady
state of a workload has arrived, detailed charac-
terization mode is used to perform cycle-by-cy-
cle functional simulation and to collect execution
statistics.

Therefore, our hierarchy simulation-based
design verification technique enables us to get
accurate simulation results while studying large
complex multiprocessor systems with real work-

loads within reasonable time.

4.2 OS Kernel Execution Time Breakdown

Figure 4 shows the average execution time
breakdown for RADIX sort algorithm on 32 CPU
CC-NUMA machines. The data shown here is
derived from three samples from different ex—
ecution periods of the workload on IRIX 5.3

Table 3. Comparison of Local Remote Access Time on Different Machines.

System Local‘ Memory R?;]s:léshg:::g)ry Rem(()éecall\gg;nory
Hal S-1 240 710 1365
SGI Origin 200 710 805
HP-Examplar 450 1315 1955
Simulated machine 225 725 975

1610 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2005

ported SMP kernels (See Fig 4). The total ex-
ecution time can be divided into idle time, user
execution time, and kernel execution time.

In particular, user execution time is defined as
the period in which CPU is occupied by the in-
structions from user processes. Similarly, kernel
execution time refers as the time spent on ex-
ecuting kernel instructions.

The idle time can be regarded as the transitive
state between kernel and user. During idle time,
OS is still active but simply executes a waiting
loop for the ready processes or threads, either
from user space or kernel space. The idle time
can be triggered by synchronization of either
user or kernel threads or 1/O activities. During
the idle time, OS performance is generally un
important to overall system performance. For this
reason, non-idle time rather than overall ma-
chine time is used here to generate the metric

for this simulation.

Fig. 4. Execution Time Breakdown.

4.3 Kernel Routines Execution Time

We find that the distribution of kernel service
time is highly concentrated in this simulated
machine: i.e, 80% kernel service time go to ap-
proximately 20~ 30 routines.

Table 4 summaries the functionality of these
routines. Generally speékﬂig, these frequently
called routines fall into four categories: namely,
virtual memory handlers, scheduling handler,
frequently invoked services, e.g., interrupts and
clock dispatching, and the file system interface

Table 4. Kernel Routines with the Most Execution

Time.

Kernel Routine Functionality
Fork System call
Demand-Zero VM fault handlers
Cpuintr Dispach Interrupt
Pfault Page fault handler
Rungproc Scheduler
Clock Clock Interrupt Handler
UTIb TLB refill handler
BSD File System
Vfault Vnode fault handler

routines. High-performance computing system in-
cluded multi—core processor and applications must
often manage time-critical responses. Therefore,
kernel routine execution time is very important
issue in order to validate design verification both
architectural approaches and simulation-based
validation.

Figure 5 show the execution time breakdown
by OS kernel services. The most frequent kernel
routine utlb, vfault and pfault are used to perform
virtual memory management and map virtual
memory to physical memory (See Fig 5). These
kernel routines will be called whenever a fault
of either vnode or page table occurs.

Another group of routines that have high
execution time is the kernel services with high
occurrence frequency. These frequently invoked
services, e.g., clock handler or interrupt dis-

% of Execution Time

$,
é\’ \v 0\9

6‘@@

¢ o4 %
. &4 § &l g
J) ‘\‘\ ¢ v o0
yYeoro (AN

13
& 6°® ;
Kernel Routine

Fig. 5. Kernel Execution Time Breakdown based
on Kernel Services.

Simulation-based Design Verification for High-performance Computing System 1611

patching routines, usually have small average
execution time. However, their high frequency
makes them also play important roles in kernel
execution time.

QOur simulation result indicates that a potential
improvement of OS kernel can be made by en-
hancing the efficiency of those routines with the
longest run time. On the other hand, the high
concentrated characteristics of OS routines im-
plies that a small amount of kernel code repli-
cation may help to reduce the kernel execution
fime by reducing remote misses at a much lower

memory cost than full replication.

5. CONCLUSIONS

SimOS provides the ability to investigate both
realistic workloads and operating systems by sim-
ulating the system design verification tools and
system simulation. Meanwhile, trade-offs between
speed and accuracy can be made while simulating
large workloads on complex system. This paper
has also presented a case study of IRIX 5.3 ported
SMP kernel on a 32 CPUs CC-NUMA architecture.

Moreover, OS kemnel execution time is highly
concentrated and dominated by a small group of
kernel routines, most of which are virtual memory
management routines and frequency-invoked
events handler.

Our simulation results show that approximately
32% of the total execution time involves the OS
kernel. Also, memory system stalls and remote
memory access latency is occupied almost 43% of
the OS time. We have discussed that the IRIX 5.3
ported SMP kernel should be improved to show a
good performance on CC-NUMA architecture by

using.

6. REFERENCES

[1] M. Rosenblum, S.A. Herrod, E. Withchel, and
A. Gupta, “Complete Computer System Simu-

[2]

[31]

[4]

(6]

(7]

(8]

[91]

lation: the SimOS. Approach,” IEEE Parallel
and Distributed Technology: System and
Application, vol 3, no., 4 pp. 34-43 winter
1995.

S. A. Herrod, “Using Complete Machine
Simulation to Understand Computer System
Behavior,” Ph.D. Thesis, Stanford University,
Feb. 1998.
N. Bowman, and et. al, “Evaluation of
Existing Architecture in IRAM Systems,”
International Symposium on Computer Archi-
tecture, June 1997.

M. Rosenblum, E. Bugnion, S. Devine, and S.
Herrod, “Using the SimOS Machine Simulator
to Study Complex Computer Systems,” ACM
TOMACS Special Issue on Computer Simu-
lation, 1997.

E. Witchel and M. Rosenblum, “Embra: Fast
and Flexible Machine Simulation,” Proc of
ACM SIGMETRICS
Measurement and Modeling of Computer
Systems, Philadelphia, PA, 1996.

G.E. Blelloch and et. al., “A Comparison of
Sorting Algorithms for the Connection Ma-

‘96: Conference on

chine CM~2," Proceedings of the Symposium
on Parallel Algorithms and Architectures, pp.
3-16, July 1991.

A. Agawal, R. Bianchini, D. Chaikem, K.L.
Johnson, D. Krnz, J. Kubiatowics, B. Lim, K.
Machenzie, and D. Yeung, “The MIT Alewife
Machine:
Proc. of the 22" * International Symposium on
Computer Architecture,” pp. 2-13, May 1995.
J. Kuskin, and et.al,, “The Stanford FLASH
Multiprocessor,” Proceeding of the 21% Inter-

Architecture and Performance,”

national Symposium on Computer Architec-
ture, pp. 302-313, April 1994.

S.C. Woo, and etal, “The SPLASH-2 Pro-
gram: Characterization and Methodological
Consideration,” Annual International Sym-
posium on Computer Architecture, pp. 24-36
June 1995.

1612 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 12, DECEMBER 2005

ACKNOWLEDGEMENT

The author would like to thanks the referees for
their valuable comments.

Taikyeong Jeong

He received the Ph.D. degree from the Department
of Electrical and Computer Engineering, the University
of Texas at Austin in 2004. He performed research in
the area of high performance circuit and power effi-
ciency system design. He joined the University of
Delaware, where he is now a research associate under
the research grants of NASA (NNGO05GJ38G), working
on low power digital circuits for next generation space
robotics devices and high performance computing. His
research interests include VLSI design, computer ar-
chitecture, logic design, and high performance com-
puting. He is a member of IEE, IEICE and IEEE.

