Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations

질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거

  • Kim Tae-Uk (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yeon Kyeong-Ho (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Cho Jaeweon (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Moon Seung-Hyeon (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 김태욱 (광주과학기술원 환경공학과) ;
  • 연경호 (광주과학기술원 환경공학과) ;
  • 조재원 (광주과학기술원 환경공학과) ;
  • 문승현 (광주과학기술원 환경공학과)
  • Published : 2005.12.01

Abstract

As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

다수의 잠재적인 내분비계장애물질이 환경에 방출됨으로써 새로운 환경문제로 세계적 관심이 모아지고 있다. 이러한 물질들을 측정하고 감시하기 위한 고감도이며 신뢰성 있는 분석방법의 개발이 필수적이다. 이 연구에서는 기체크 로마토그래피 질량분석법과 액체크로마토그래피 질량분석법이 내분비계장애물질들의 분석을 위해 이용되었으며 두 가지 분석방법들이 DEHP, BBP, PCP, BPA에 대해 비교 및 평가되었다 그 결과 액체크로마토그래피 질량분석법이 더 낮은 검출 한계를 나타내는 것으로 조사되었다. 또한 액체크로마토그래피 질량분석법은 대부분의 순수한 분자들로서 내분비계장애물질들을 측정 가능함이 판명되었다. 이 연구에서는 음용수에서 내분비계장애물질들을 제거하는 방법으로 유기막과 세라믹막을 제시하였으며 십자류 나노여과 방식이 내분비계장애물질들을 $100\%$ 제거하는 것으로 조사되었고 분획분자량 250 나노여과는 내분비계장애물질을 제거함에 있어 효과적인 것으로 판명되었다. 나노여과, 고속한외여과, 저속한외여과의 투과플럭스와 물질전달계수와의 비는 0.67, 3.4, 그리고 0.44였으며 나노여과와 저속한외여과는 확산이 주요한 조건에서 운전되며 고속한외여과는 대류가 주요한 조건에서 운전된다. 더욱이, 확산이 주요한 나노여과와 저속한외여과에서 내분비계장애물질의 제거율이 높은 것으로 측정되었다. 한외여과에 의한 제거는 내분비계장애물질들의 분자량에 의존하는 것으로 조사되었으며 내분비계장애물질들은 확산이 주요한 수리동역학적 조건에서 제거됨이 판명되었다.

Keywords

References

  1. S. Takeuchi, M. Iida, S. Kobayashi, and K. Jin, 'Tadashi Matsuda and Hiroyuki Kojima Differential effects of phthalate esters on transcriptional activities via human estrogen receptors $\alpha$, and $\beta$, and androgen receptor', Toxicology, 210(2-3), 223-233 (2005) https://doi.org/10.1016/j.tox.2005.02.002
  2. R. Cespedes, S. Lacorte, D. Raldua, A. Ginebreda, D. Barcelo, and B. Pina, 'Distribution of endocrine disruptors in the Llobregat River basin' (Catalonia, NE Spain), Chemosphere, In Press, Corrected Proof, Available online (2005)
  3. A. J. Oosterkamp, B. Hock, M. Seifert, and H. Irth, 'Novel monitoring strategies for xenoestrogens', Trends in Analytical Chemistry, 16(10), 544-553 (1997) https://doi.org/10.1016/S0165-9936(97)00099-X
  4. M. Castillo and D. Barcelo, 'Analysis of industrial effluents to determine endocrine-disrupting chemicals', Trends in Analytical Chemistry, 16(10), 574-583 (1997) https://doi.org/10.1016/S0165-9936(97)00090-3
  5. S. Safe, 'Clinical correlates of environmental endocrine disruptors', Trends in Endocrinology and Metabolism, 16(4), 139-144 (2005) https://doi.org/10.1016/j.tem.2005.03.004
  6. J. K. Fawell and S. Hedgecott, 'Derivation of acceptable concentrations for the protection of aquatic organisms', Environ. Toxicol. Pharmacol., 2(2-3), 115-120 (1996) https://doi.org/10.1016/S1382-6689(96)00040-3
  7. A. Pillon, N. Servant, F. Vignon, P. Balaguer, and J. C. Nicolas, 'In vivo bioluminescence imaging to evaluate estrogenic activities of endocrine disrupters', Analytical Biochemistry, 340(2), 295-302 (2005) https://doi.org/10.1016/j.ab.2005.02.032
  8. A. Klann, G. Levy, I. Lutz, C. Muller, W. Kloas, and J. P.Hildebrandt, 'Estrogen-like effects of ultraviolet screen 3-( 4-methylbenzylidene )-camphor (Eusolex 6300) on cell proliferation and gene induction in mammalian and amphibian cells', Environmental Research, 97(3), 274-281 (2005) https://doi.org/10.1016/j.envres.2004.07.004
  9. T. Schultis and J. W. Metzger, 'Determination of estrogenic activity by L YES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase)', Chemosphere, 57(11) 1649-1655 (2004) https://doi.org/10.1016/j.chemosphere.2004.06.027
  10. A. Oubina, D. Puig, J. Gascon, and D. Barcelo, 'Determination of pentachlorophenol in certified waste waters, soil samples and industrial effluents using ELISA and liquid solid extraction followed by liquid chromatography', Anal. Chim. Acta., 346(1), 49-59 (1997) https://doi.org/10.1016/S0003-2670(97)00004-4
  11. The Merck Index, 11 th edition, Merck and Co., Rahway, New Jersey (1989)
  12. J. M. Peters, M. W. Taubeneck, C. L. Keen, and F. J. Gonzalez, 'Di(2-ethylhexyl)phthalate induces a functional zinc deficiency during pregnancy and teratogenesis that is independent of peroxisome proliferator-activated receptor-alpha, Teratology', 56(5), 311- 316 (1997) https://doi.org/10.1002/(SICI)1096-9926(199711)56:5<311::AID-TERA4>3.0.CO;2-#
  13. S. Jobling, T. Reynolds, R. White, M. G. Parker, and J. P. Sumpter, 'A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic', Environ. Health Perspect., 103(6), 582-587 (1995) https://doi.org/10.2307/3432434
  14. E. Benfenati, G. Facchini, P. Pierucci, and R. Fanelli, 'Dentification of organic contaminants in leachates from industrial waste landfills', Trends in Analy. Chem., 15(12), 305-310 (1996)
  15. E. Benfenati, D. Barcelo, I. Johnson, S. Galassi, and K. Levsen, 'Emerging organic contaminants in leachates from industrial waste landfills and industrial effluent', Trends in Analy. Chem. 22(10), 757-765 (2003) https://doi.org/10.1016/S0165-9936(03)01004-5
  16. L. D. Betowski, D. S. Kendall, C. M. Pace, and J. R. Donnelly, 'Characterization of groundwater samples from superfund sites by gas chromatography mass spectrometry and liquid chromatography mass spectrometry', Environ. Sci. Technol., 30, 3558-3564 (1996) https://doi.org/10.1021/es9602206
  17. L. D. Betowski, M. Enlow, and L. Riddick, 'The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment', Computers & Chemistry, 26(4), 371-377 (2002) https://doi.org/10.1016/S0097-8485(02)00002-5
  18. J. D. Rudder, T. V. D. Wiele, W. Dhooge, F. Comhaire, and W. Verstraete, 'Advanced water treatment with manganese oxide for the removal of 17 $\alpha$ -ethynylestradiol (EE2)', Water Research, 38(1), 184-192 (2004) https://doi.org/10.1016/j.watres.2003.09.018
  19. K. H. Noh, T. O. Kwon, J. W. Lee, and I. S. Moon, '$TiO_2$/UV and Ultrafiltration Membrane Process for the Degradation of Bisphenol A Dissolved in Water', Korean Membrane Journal 04 Proceedings of the second conference of aseanian membrane society, 203-206 (2004)
  20. T. Wintgens, M. Gallenkemper, and T. Melin, Endocrine disrupter removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination, 146(1-3), 387-391 (2002) https://doi.org/10.1016/S0011-9164(02)00519-2
  21. K. Kimura, G. Amy, J. E. Drewes, T. Heberer, T. U. Kim, and Y. Watanabe, 'Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes', Journal of Membrane Science, 227(1-2), 113-121 (2003) https://doi.org/10.1016/j.memsci.2003.09.005
  22. K. Kimura, S. Toshima, G. Amy, and Y. Watanabe, 'Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes'. Journal of Membrane Science, 245(1-2), 71-78 (2004) https://doi.org/10.1016/j.memsci.2004.07.018
  23. J. H. Choi, C. K. Yeom, J. M. Lee, 'and D. S. Suh, 'Nanofiltration of Electrolytes with Charged Composite Membranes', Membrane Journal 1226-0088, 13(1), 29-36 (2003)
  24. J. Jegal, K. S. Baek, and K. H. Lee, 'Nanofiltration of Dye Solutions Through Polyamide Composite Membranes', Korean Membrane Journal 1229-6791, 4(1), 12-19 (2002)
  25. H. Takaba, Y. Ito, and S. Nakao, 'Rejection Properties of Silica Nanoparticles from Ultrafiltration Membranes', Korean Membrane Journal, 1229-6791, 5(1), 54-60 (2003)
  26. H. S. Choi, Y. T. Park, and S. K. Lee, 'Permeation Characteristics of Wastewater Containing Si Fine Particles through Ultrafiltration', Korean Membrane Journal, 1229-6791, 5(1), 31-35 (2003)
  27. I. G. Seo, S. J Shin, B. R. Min, and H. Y. Song, 'A Study of the Development of a Radial Pleat Module for Low Pressure Using an Ultrafiltration Membrane', Korean Membrane Journal, 1229-6791, 4(1), 7-11 (2002)
  28. EPA (Environmental Protection Agency), 'Handbook: Continuous Emission, Monitoring Systems for Non-criteria Pollutants', Method 625, http://www. epa.gov/OST /Tools/guide/625 .pdfEPA/625/R-97 /001 (1997)
  29. J. Cho, G. Amy, and J. Pellegrino, 'Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane', Journal of Membrane Science., 164(1-2), 89-110 (2000) https://doi.org/10.1016/S0376-7388(99)00176-3
  30. R. P. Schwarzenbach, P. M. Gschwend, and D. M. Imboden, 'Environmental Organic Chemistry', Wiley-Interscience, New York, pp. 199-200 (1993)
  31. S. Y.' Lee, and J. Cho, 'Evaluation of polymeric and ceramic NF /UF membrane application for drinking water treatment based on NOM/membrane characterizations', Proc. 2000 A WWA Annual Conference, Denver, Colorado (2000)
  32. J. H. Montgomery, 'Groundwater Chemicals', 2nd Ed., Lewis Publishers, New York (1996)