공기 중에서 금속 헥사카르보닐 착물 $M(CO)_6$ (M=Cr, Mo, W)를 이용한 폴러렌 산화물 $[C_{70}O_n](n=1{\sim}2)$의 초음파화학 합성

Sonochemical Synthesis of Fullerene Oxides $[C_{70}O_n](n=1{\sim}2)$ Using Metal Hexacarbonyl Complexes $M(CO)_6$ (M=Cr, Mo, W) Under Air Atmosphere

  • 발행 : 2005.09.30

초록

공기 중 초음파 조건에서 풀러렌$[C_{70}]$과 금속 헥사카르보닐 착물 $M(CO)_6$ (M=Cr, Mo, W)을 반응시켜 풀러렌 산화물 $[C_{70}O_n](n=1{\sim}2)$을 합성하였다. 동일한 초음파 조건에서 풀러렌$[C_{70}]$과 여러 가지 금속 헥사카르보닐 착물 $M(CO)_6$ (M=Cr, Mo, W)의 반응성은 $Mo(CO)_6$ > $W(CO)_6$ > $Cr(CO)_6$ 순으로 증가함을 나타냈다. MALDI-TOF-MS, UV-visible 스펙트럼과 HPLC를 사용하여 분석한 결과 초음파화학 반응의 생성물은 $[C_{70}O_n](n=1{\sim}2)$ 임을 알 수 있었다.

Sonochemical synthesis of fullerene oxides $[C_{70}O_n](n=1{\sim}2)$ by fullerene$[C_{70}]$ and metal hexacarbonyl complexes $M(CO)_6$(M=Cr, Mo, W) took place under air atmosphere. The reactivity of fullerene$[C_{70}]$ and several metal hexacarbonyl complexes $M(CO)_6$(M=Cr, Mo, W) under same ultrasonic condition increased in the order of $Mo(CO)_6$ > $W(CO)_6$ > $Cr(CO)_6$. The MALDI-TOF-MS, UV-visible spectra, and HPLC analysis confirmed that the products of sonochemical reaction were $[C_{70}O_n](n=1{\sim}2)$.

키워드

참고문헌

  1. K. S. Suslick, 'Ultrasound: Its Chemical, Physical and Biological Effects', ed. by K. S. Suslick, VCH Publisher, Weinheim, 1988
  2. K. S. Suslick, S. B. Choe, A. A. Cichowlas, M. W. Grinstaff, 'Sonochemical Synthesis of Amorphous Iron', Nature, 353, 414 (1991)
  3. Y. Koltypin, G. Katabi, R. Prozorov, A. Gedanken, 'Sonochemical Preparation of Amorphous Nickel', J. Non-Cryst. Solids, 201, 159 (1996)
  4. T. Hyeon, M. Fang, K. S. Suslick, 'Nanostructed Molybdenum Carbide:Sonochemical Synthesis and Catalytic Properties' J. Am. Chem. Soc, 118, 5492 (1996)
  5. X. Cao, Y. Koltypin, G. Katabi, I. Felner, A. Gedanken, 'The Preparation of Metal Polymer Composite Materials Using Ultrasound Radiation' J. Mater. Res. 12, 405 (1997) https://doi.org/10.1557/JMR.1997.0140
  6. N. A. Dhas, and A. Gedanken, 'Characterization of Sonochemically Prepared Unsupported and SilicaSupported Nanostructured Pentavalent Molybdenum Oxide', J. Phys. Chem. B, 101, 9495 (1997)
  7. T. J. Mason, 'Sonochemistry and Sonoprocessing: The Link, The Trends and (Probably) The Future', Ultrason Sonochem, 10, 175 (2003)
  8. N. A. Dhas, and A. Gedanken, 'Sonochemical Syn thesis of Molybdenum Oxide-and Molybdenum Carbide-Silica Nanocomposites', Chem. Mater, 9, 3144 (1997)
  9. G. Mul, F. Kapteijn, and J. A. Moulijn, 'A DRIFTS Study of the Interaction of Alkali Metal Oxides with Carbonaceous Surfaces', Carbon, 37, 401 (1999)
  10. W. B. Ko, J. H. Ahn, Y. A. Lim, J. Y. Han, and D. S. Han, 'Synthesis of Fullerene Oxides $[C_{70}O_n]$ (n=1-3 or n=1) Under Microwave Irradiation', Elastomer, 39(4), 309 (2004)
  11. W. B. Ko, S. H. Hwang, and J. H. Ahn, 'The Oxidation of Fullerene $[C_{60}]$ Using Several Oxidants Under Microwave Irradiation' , Elastomer, 40(1), 45 (2005)
  12. W. B. Ko, and K. N. Baek, 'The Oxidation of Fullerenes($C_{60}$, $C_{70}$) with Various Oxidants Under Ultrasonication', Phys. Solid State, 44, 424 (2002)
  13. G. Mul, J. P. A. Neef, F. Kapteijn, and J. A. Moulijn, 'The Formation of Carbon Surface Oxygen Complexes by Oxygen and Ozone. The Effect of Transition Metal Oxides', Carbon, 36(9), 1269 (1998)
  14. L. T. Weng, P. Ruiz, Y. Ma, and B. Delmon, 'Cooperation between $MoO_3$ and Other Metal Oxides in Selective Oxidation of Isobutene to Methacrolein' J. Mol. Catal, 61, 99 (1990)
  15. L. T. Weng, P. Ruiz, and B. Delmon, 'Evidence of Migration of Oxygen Species from $Sb_2O_4$ to $MoO_3$ in $MoO_3$-$Sb_2O_4$ Selective Oxidation Catalysts' J. Mol. Catal, 52, 349 (1989)
  16. I. F. Silva, and L. S. Lobo, 'Uncatalysed and $MoO_3$-Catalysed Carbon Oxygen Reaction: A Kinetic Study' J. Catal, 126, 489 (1990)