차량에 부착된 측하방 CCD카메라를 이용한 차선추출 알고리즘 개발

Development of a Lane Detect Algorithm from Road-Facing Cameras on a Vehicle

  • 이수암 (인하대학교 지리정보공학과) ;
  • 이태윤 (인하대학교 지리정보공학과) ;
  • 김태정 (인하대학교 지리정보공학과) ;
  • 성정곤 (건설기술연구원 도로연구부)
  • 발행 : 2005.09.30

초록

3차원적인 도로의 안정성을 분석하기 위하여 개발중인 도로안정성 조사분석차량(RoSSAV) 에서 촬영된 측하방 CCD 영상에서 추출된 차선 중심점의 좌표가 있다면, 이 정보를 GPS 및 IMU 자료와 결합하여 차선의 3차원 위치정보를 자동으로 계산할 수 있다. 이 논문의 목적은 상기한 도로안전성 조사분석차량에서 취득한 측하방 영상으로부터 차선을 인식하고 차선의 중심점을 자동으로 검출해 내는 기술을 개발하는 데에 있다. 제안된 알고리즘은 촬영된 측하방 영상의 에지 방향을 분석하여 라인후보 영역(Line Supporting Region)을 정의하고, 이 영역의 에지 크기 프로파일을 분석하여 평면으로 근사시킨 뒤 근사된 평면의 중심선을 라인으로 추출한 후, 추출된 라인의 쌍이 차선의 밝기와 폭의 조건을 만족시킬 경우, 이를 차선으로 인식하는 알고리즘이다 이 알고리즘은 기존에 제안된 문턱화 기법에 기반한 도로추출방법에 비해 정확하고 안정적이며, 실제로 주어진 측하방 CCD영상을 이용한 실험을 통해 효과적으로 차선이 추출됨을 입증하였다.

3D positional information of lane can be automatically calculated tv combining GPS data, IMU data if coordinates of lane centers are given. The Road Safety Survey and Analysis Vehicle(RoSSAV) is currently under development to analyze three dimensional safety and stability of roads. RoSSAV has GPS and IMU sensors to get positional information of the vehicle and two road-facing CCD cameras for extraction of lane coordinates. In this paper, we develop technology that automatically detects centers of lanes from the road-facing cameras of RoSSAV. The proposed algorithm defines line-support regions by grouping pixels with similar edge orientation and magnitude together and extracts a line from each line support region by planar fitting. Then if extracted lines and the region in-between satisfy the criteria of brightness and width, we decide this region as lane. The proposed algorithm was more precise and stable than the previously proposed algorithm based on brightness threshold method. Experiments with real road scenes confirmed that lane was effectively extracted by the proposed algorithm.

키워드