Degradation of Pentachlorophenol by Lignin Degrading Fungi and Their Laccases

  • Cho, Nam-Seok (Wood and Paper Science, Chungbuk National University) ;
  • Cho, Hee-Yeon (Section of Molecular & Cellular Biology, University of California Davis) ;
  • Pham, Hop Thi Bich (Institute of Biotechnology, Center for Natural Sciences & Technology)
  • Received : 2005.05.02
  • Accepted : 2005.06.13
  • Published : 2005.09.25

Abstract

The degradation of pentachlorophenol (PCP) by lignin degrading fungi was performed. Several fungi, Abortiporus biennis, Cerrena unicolor and Trametes versicolor, were tested to evaluate the inhibitory effect of PCP on their growth. At the extremal concentration of PCP $(500\;{\mu}M)$, only C. unicolor showed relatively fast growth (60% within 14 days) in the comparison to the control culture. In the case of A. biennis and C. unicolor, when initial PCP concentration was $50\;{\mu}M$, about 88.2% and 79.5% of PCP degradation were achieved within 3 days, respectively. When 2,5-xylidine (0.2 mM) was added to the C. unicolor culture, as high as 98% of PCP degradation was achieved within just an hour after its addition. A. biennis removed 44% of PCP at the same condition. PCP was completely disappeared when laccase activities reached to maximum.

Keywords

Acknowledgement

Supported by : Korean Research Foundation, APEC

References

  1. Badkoubi, A., D. K. Stevens, and I. P. Murarka. 1996. Quantification of pentachlorophenol transformation product distribution in the presence of Phanerochaete chrysosporium. Arch. Environ. Contamin. Toxicol. 30: 1-8 https://doi.org/10.1007/BF00211322
  2. Bergbauer, M., C. Eggert, and G. Kraepelin. 1991. Degradation of chlorinated lignin compounds in a bleach plant effluent by the white rot fungus, Trametes versicolor. Appl. Microbiol. Biochem. 35: 105-109
  3. Blumer, M. 1976. Polycyclic aromatic compounds in nature. Sci. Am. 234: 34-45
  4. Bollag, J. M., K. I. Shuttleworth, and D. H. Anderson. 1988. Laccase mediated detoxification of phenolic compounds. Appl. Environ. Microbiol. 54: 3086-3091
  5. Bollag, J. M. and A. Leonowicz. 1984. Comparative studies of extracellular fungal laccases. Appl. Env. Microbiol. 48: 849-854
  6. Bumpus, J. A. and S. D. Aust. 1986. Biodegradation of environmental pollutants by the white rot fungus, Phanerochaete chrysosporium: involvement of the lignin degrading system. Bio Assays 6: 166-170
  7. Cho, N.-S., Y. S. Kim, M. H. Pang, Y. J. Choi, J. H. Nam, and A. Leonowicz. 1998. Induction of laccase from wood rotting fungi with 2,5xylidine. Mockchae Konghak 26(3): 41-47
  8. Cho, N.-S., J. Luterek, L. Gianfreda, M. W. Wasilewska, J. Rogalski, M. Yaszek, E. Malarczyk, M. Staszczak, M. Fink-boots, and A. Leonowicz. 1998. Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52: 589-595 https://doi.org/10.1515/hfsg.1998.52.6.589
  9. Cho, N. S, J. Rogalski, M. Jaszek, J. Luterek, M. Wojtas-Wasilewska, E. Malarczyk, M. Fink-Boots, and A. Leonowicz. 1999. Effect of coniferyl alcohol addition on removal of chlorophenols from water effluent by fungal laccase. J. Wood Sci. 45:174-178 https://doi.org/10.1007/BF01192337
  10. Cho, N.-S., J. H. Nam, J. M. Park, C. D. Koo, S. S. Lee, N. Nataliya, S. Ohga, and A. Leonowicz. 2001. Transformation of chlorophenols by white-rot fungi and their laccase. Holzforschung 55(6): 576 - 584
  11. Dec, J. and J. M. Bollag. 1994. Dehalogenation of chlorinated phenols during oxidative coupling. Environ. Sci. Technol. 28: 484-490 https://doi.org/10.1021/es00052a022
  12. Dec, J. and J. M. Bollag. 1995. Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Env. Sci. Technol. 29: 657-663 https://doi.org/10.1021/es00003a012
  13. Fahraeus, G., V. Tullander, and H. Liunggren. 1958. Production of high laccase yields in cultures of fungi. Physiol. Plant. 11: 631-643 https://doi.org/10.1111/j.1399-3054.1958.tb08259.x
  14. Ginalska, G., N.-S. Cho, J. Lobarzewski, A. Piccolo, and A. Leonowicz. 2001a. An immobilization of extracellular laccase to humus-iron complex. Mokchae Konghak 29(3): 104-111
  15. Ginalska, G., J. Lobarzewski, N.-S. Cho, T. H. Choi, S. Ohga, M. Jaszek, and A. Leonowicz. 2001b. Immobilization of fungal laccase on kreatin-coated soil and glass matrices. Mokchae Konghak 29(3): 112 - 122
  16. Haggblom, M. M. and L. Y. Young. 1990. Chlorophenol degradation coupled to sulfate reduction. Appl. Environ. Microbiol. 56: 3255 - 3260
  17. Kang, G. and D. K. Stevens. 1994. Degradation of pentachlorophenol in bench scale bioreactors using the white rot fungus Phanerochaete chrysosporium. Haz. Waste Haz. Mat. 11: 397-410 https://doi.org/10.1089/hwm.1994.11.397
  18. Kim, Y. S., N.-S. Cho, T. J. Eom, and W. Shin. 2002. Purification and characterization from Cerrena unicolor and its reactivity in lignin degradation. Bull. Korean Chem. Soc. 23(7): 985-989. https://doi.org/10.5012/bkcs.2002.23.7.985
  19. Konishi, K. and Y. Inoue. 1972. Detoxification mechanism of pentachlorophenol by the laccase of CorioIus versicolor. Mokuzai Gakkaishi 18: 463-469
  20. Lamar, R. T., J. A. Glaser, and T. K. Kirk. 1990. Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: Mineralization, volatilization and depletion of PCP. Soil BioI. Biochem. 22: 433-440 https://doi.org/10.1016/0038-0717(90)90175-Y
  21. Leonowicz, A. and K. Grzywnowicz. 1981. Quantitative estimation of laccase forms in some whiterot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 3: 55 - 58 https://doi.org/10.1016/0141-0229(81)90036-3
  22. Leonowicz, A., R. U. Edgechill, and J. M. Bollag. 1984. The effect of pH on the transformation of syringic and vanillic acids by the laccases of Rhizoctonia praticola and Trametes versicolor. Arch. Microbiol. 137: 89 - 96 https://doi.org/10.1007/BF00414446
  23. Leonowicz, A., L. Gianfreda, M. W. Wasilewska, J. Rogalski, J. Luterek, E. Malarczyk, A. Dawidowicz, M. Fink-Boots, G. Ginalska, and N.-S. Cho. 1997. Purification of Cerrena unicolor extracellular laccase by means of affinity chromatography. Korea Tappi. 29(4): 7-17
  24. Leonowicz, A., L. Gianfreda, M. W. Wasilewska, J. Rogalski, J. Luterek, E. Malarczyk, A. Dawidowicz, M. Fink-Boots, G. Ginalska, M. Staszczak, and N.-S. Cho. 1997. Appearance of laccase in wood-rotting fungi and its inducibility. Mockchae Konghak 25(3):29 - 36
  25. Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziegenhagen, M. Wojtas-Wasilewska, M. Hofrichter, J. Rogalski, and N.-S. Cho. 1999. Effect of superoxide dismutase and low molecular mediators on Lignin Degradation. Mokchae Konghak 27(4):1 - 14
  26. Lindeberg, G. and G. Holm. 1952. Occurence of tyrosinase and laccase in fruit bodies and mycelia of some Hymenomycetes. Physiol. Plantarum 5: 100-114 https://doi.org/10.1111/j.1399-3054.1952.tb08234.x
  27. Lin, J. E., H. Y. Wang, and R. F. Hickey. 1990. Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol. Bioeng. 35: 1125-1134 https://doi.org/10.1002/bit.260351108
  28. Luterek, J., L. Gianfreda, M. Wojtas-Wasilewska, N. S. Cho, J. Rogalski, E. Malarczyk, M. Staszczak, M. Ping-Boots, and A. Leonowicz. 1998. Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52: 589 - 595 https://doi.org/10.1515/hfsg.1998.52.6.589
  29. Lyr, H. 1963. Enzymatische detoxifikation chlorierter phenole. Phytopathol. Z. 47: 73-83 https://doi.org/10.1111/j.1439-0434.1963.tb02084.x
  30. Mcilvaine, T. C. 1921. A buffer solution for colorimetric comparison. J. BioI. Chem. 49: 183-186
  31. Mileski, G. J., J. A. Bumpus, M. A. Jurek, and S.D. Aust. 1988. Biodegradation of pentachlorophenol by the white-rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54:2885-2889
  32. Minard, R. D., S. Y. Liu, and J. M. Bollag. 1981. Oligomers and quinones from 2,4-dichlorophenol. J. Agric. Food Chem. 29: 250-253 https://doi.org/10.1021/jf00104a010
  33. Murthy, N. B. K., D. D. Kaufman, and F. Fries. 1979. Degradation of pentachlorophenol (PCP) in aerobic and anaerobic soil. J. Environ. Sci. Health B14: 1-14
  34. Pellinen, J., T. W. Joyce, and H. M. Chang. 1988. Dechlorination of high molecular weight chlorolignin by the white-rot fungus Phanerochaete chrysosporium. Tappi J. 71(9): 191-194
  35. Rao, K. R. 1978. Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology. Plenum Press, New York
  36. Roper, J. C, J. M. Sarkar, J. Dec, and J. M. Bollag. 1995. Enhanced enzymatic removal of chlorophenols in the presence of co-substrates. Water Res. 29: 2720-2724 https://doi.org/10.1016/0043-1354(95)00101-P
  37. Roy Arcand, L. and F. S. Archibald. 1991. Direct dechlorination of chlorophenolic compounds by laccases from Trametes versicolor. Enzyme Microb. Technol. 13: 194-203 https://doi.org/10.1016/0141-0229(91)90128-W
  38. Wu, W. M., L. J. Bhatnagar, and G. Zeikus. 1993. Performance of anaerobic granules for degradation of pentachlorophenol. Appl. Environ. Microbiol. 59: 389-397