Characterization of an Arabidopsis Gene that Mediates Cytokinin Signaling in Shoot Apical Meristem Development

  • Jung, Jae-Hoon (School of Chemistry, Seoul National University) ;
  • Yun, Ju (School of Chemistry, Seoul National University) ;
  • Seo, Yeon-Hee (School of Chemistry, Seoul National University) ;
  • Park, Chung-Mo (School of Chemistry, Seoul National University)
  • Received : 2004.11.30
  • Accepted : 2005.02.11
  • Published : 2005.06.30

Abstract

Cytokinins are adenine derivatives that regulate numerous plant growth and developmental processes, including apical and floral meristem development, stem growth, leaf senescence, apical dominance, and stress tolerance. However, not much is known about how cytokinin biosynthesis and metabolism is regulated. We identified a novel Arabidopsis gene, ALL, encoding an aldolase-like enzyme that regulates cytokinin signaling. An Arabidopsis mutant, all-1D, in which ALL is activated by the nearby insertion of the 35S enhancer, exhibited extreme dwarfism with rolled, dark-green leaves and reduced apical dominance, symptomatic of cytokinin-overproducing mutants. Consistent with this, ARR4 and ARR5, two representative primary cytokinin-responsive genes, were significantly induced in all-1D. Whereas SHOOT MERISTEMLESS (STM) and KNAT1, which regulate meristem development, were also greatly induced, expression of REV and PHV that regulate lateral organ polarity was inhibited. ALL encodes an aldolase-like enzyme that belongs to the HpcH/HpaI aldolase family in prokaryotes and is down-regulated by exogenous cytokinin, possibly through a negative feedback pathway. We propose that ALL is involved in cytokinin biosynthesis or metabolism and acts as a positive regulator of cytokinin signaling during shoot apical meristem development and determination of lateral organ polarity.

Keywords

Acknowledgement

Supported by : Plant Signaling Network Research Center, KOSEF, KISTEP

References

  1. Bilyeu, K. D., Cole, J. L., Laskey, J. G., Riekhof, W. R., Esparza, T. J., et al. (2001) Molecular and biochemical characterization of a cytokinin oxidase from Zea mays. Plant Physiol. 125, 378-386 https://doi.org/10.1104/pp.125.1.378
  2. Brzobohaty, B., Moore, I., Kristoffersen, P., Bako, L., Campos, N., et al. (1993) Release of active cytokinin by a $\beta$- glucosidase localized to the maize root meristem. Science 262, 1051-1054 https://doi.org/10.1126/science.8235622
  3. Cary, A. J., Che, P., and Howell, S. H. (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J. 32, 867-877 https://doi.org/10.1046/j.1365-313X.2002.01479.x
  4. Chuck, G., Lincoln, C., and Hake, S. (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8, 1277-1289 https://doi.org/10.1105/tpc.8.8.1277
  5. Clark, S. E., Running, M. P., and Meyerowitz, E. M. (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397-418
  6. Clark, S. E., Running, M. P., and Meyerowitz, E. M. (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121, 2057-2067
  7. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  8. D'Agostino, I., Deruere, J., and Kieber, J. J. (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124, 1706-1717 https://doi.org/10.1104/pp.124.4.1706
  9. Endrizzi, K., Moussian, B., Haecker, A., Levin, J. Z., and Laux, T. (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10, 967-979 https://doi.org/10.1046/j.1365-313X.1996.10060967.x
  10. Faiss, M., Zalubilova, J., Strnad, M., and Schmülling, T. (1997) Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 12, 401-415 https://doi.org/10.1046/j.1365-313X.1997.12020401.x
  11. Helliwell, C. A., Chin-Atkins, A. N., Wilson, I. W., Chapple, R., Dennis, E. S., et al. (2001) The Arabidopsis gene AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13, 2115-2125 https://doi.org/10.1105/tpc.13.9.2115
  12. Heyl, A. and Schmulling, T. (2003) Cytokinin signal perception and transduction. Curr. Opin. Plant Biol. 6, 480-488 https://doi.org/10.1016/S1369-5266(03)00087-6
  13. Houba-Hrin, N., Pethe, C., d'Alayer, J., and Laloue, M. (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J. 17, 615-626 https://doi.org/10.1046/j.1365-313X.1999.00408.x
  14. Hwang, I. and Sheen, J. (2001) Two-component circuitry in Arabidopsis signal transduction. Nature 413, 383-389 https://doi.org/10.1038/35096500
  15. Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., et al. (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409, 1060-1063 https://doi.org/10.1038/35059117
  16. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A., and Timmermans, M. C. P. (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84-88 https://doi.org/10.1038/nature02363
  17. Jurgens, G., Torres Ruiz, R. A., Laux, T., Mayer, U., and Berleth, T. (1994) Early events in apical-basal pattern formation in Arabidopsis; in Plant Molecular Biology: Molecular-Genetic Analysis of Plant Development and Metabolism, Coruzzi, G. and Puigdomenech, P. (eds.), pp. 95-103, Springer-Verlag, Berlin
  18. Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42, 677-685 https://doi.org/10.1093/pcp/pce112
  19. Kim, J.-A., Yun, J., Lee, M., Kim, Y.-S., and Park, C.-M. (2005). A basic helix-loop-helix transcription factor regulates cell elongation and seed germination. Mol. Cells 19, 334-341
  20. Laux, T., Mayer, K. F., Berger, J., and Jürgens, G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96
  21. Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457-463 https://doi.org/10.1046/j.1365-313X.1995.08030457.x
  22. Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K., and Hake, S. (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6, 1859-1876 https://doi.org/10.1105/tpc.6.12.1859
  23. Long, J. A., Moan, E. I., Medford, J. I., and Barton, M. K. (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69 https://doi.org/10.1038/379066a0
  24. Martin, R. C., Mok, M. C., and Mok, D. W. S. (1999) A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol. 120, 553-557 https://doi.org/10.1104/pp.120.2.553
  25. Martin, R. C., Mok, M. C., Habben, J. E., and Mok, D. W. S. (2001) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA 98, 5922-5926
  26. MaHale, N. A. and Koning, R. E. (2004) MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16, 1730-1740 https://doi.org/10.1105/tpc.021816
  27. Menges, M., Hennig, L., Gruissem, W., and Murray, J. A. H. (2002) Cell cycle regulated gene expression in Arabidopsis. J. Biol. Chem. 277, 41987-42002 https://doi.org/10.1074/jbc.M207570200
  28. Mok, D. W. S. and Mok, M. C. (2001) Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 89-118 https://doi.org/10.1146/annurev.arplant.52.1.89
  29. Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N., and Clark, S. E. (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25, 223-236 https://doi.org/10.1046/j.1365-313x.2001.00959.x
  30. Rashotte, A. M., Carson, S. D., To, J. P., and Kieber, J. J. (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 132, 1998-2011 https://doi.org/10.1104/pp.103.021436
  31. Roper, D. I., Stringfellow, J. M., and Cooper, R. A. (1995) Sequence of the hpcC and hpcG genes of the meta-fission homoprotocatechuic acid pathway of Escherichia coli C: nearly 40% amino-acid identity with the analogous enzymes of the catechol pathway. Gene 156, 47-51 https://doi.org/10.1016/0378-1119(95)00082-H
  32. Rupp, H. M., Frank, M., Werner, T., Strnad, M., and Schmülling, T. (1999) Increased steady state mRNA levels of the STM and KNATI homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 18, 557-563 https://doi.org/10.1046/j.1365-313X.1999.00472.x
  33. Sakai, H., Aoyama, T., and Oka, A. (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24, 703-711 https://doi.org/10.1046/j.1365-313x.2000.00909.x
  34. Sakakibara, H., Suzuki, M., Takei, K., Deji, A., Taniguchi, M., et al. (1998) A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J. 14, 337-344 https://doi.org/10.1046/j.1365-313X.1998.00134.x
  35. Shaw, G. (1994) Chemistry of adenine cytokinins, pp. 15-34
  36. Shudo, K. (1994) Chemistry of phenylurea cytokinins, pp. 35- 42
  37. Stringfellow, J. M., Turpin, B., and Cooper, R. A. (1995) Sequence of the Escherichia coli C homoprotocatechuic acid degradative operon completed with that of the 2,4-dihydroxyhept- 2-ene-1,7-dioic acid aldolase-encoding gene (hpcH). Gene 166, 73-76 https://doi.org/10.1016/0378-1119(95)00596-8
  38. Ueguchi, C., Sato, S., Kato, T., and Tabata, S. (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol. 42, 751-755 https://doi.org/10.1093/pcp/pce094
  39. Weigel, D., Ahn, J. H., Blázquez, M. A., Borevitz, J. O., Christensen, S. K., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003-1013 https://doi.org/10.1104/pp.122.4.1003
  40. Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., et al. (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin- binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 41, 1017-1023