Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal

Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성

  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Cho, Mi-Hwa (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kwon, Soo-Han (Department of Chemistry, Chungbuk National University)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 조미화 (한국화학연구원 화학소재연구부) ;
  • 김석 (한국화학연구원 화학소재연구부) ;
  • 권수한 (충북대학교 화학과)
  • Received : 2004.09.24
  • Accepted : 2005.11.01
  • Published : 2005.12.10

Abstract

In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

본 연구에서는 제조한 MCM-41에 Cu의 함량에 따른 NO의 전환율을 고찰하였다. MCM-41은 실리카 원으로 colloid silica를 사용하였고, template로 cetyltrimethylammonium chloride (CTMACl)를 사용하여 수열 합성하였으며, Cu/MCM-41은 Cu(II) acetylacetonate를 사용해서 Cu의 농도를 5, 10, 20 그리고 40%로 변화시켜 제조하였다. 표면 특성은 pH, FT-IR로 분석하였고, 육방배열의 1차원 기공 구조는 XRD로 고찰하였다. $N_2/77K$ 등온흡착 특성은 BET식과 t-plot을 이용하여 확인하였으며, NO 제거 효율은 가스크로마토그래프를 이용하여 측정하였다. 실험 결과, Si-OH와 Si-O-Si의 stretching vibration peak가 관찰되었으며, (100), (110), (200) 그리고 (210)의 육방배열의 1차원 구조를 확인하였다. Cu 금속이 도입된 MCM-41은 Cu 도입량이 증가할수록 비표면적과 미세기공부피는 감소한 반면에 NO 제거 효율은 증가하였다. 결과적으로 Cu/MCM-41의 Cu의 함량이 증가함에 따라 전체 촉매작용 반응과 NO 제거율이 증가하였다.

Keywords

References

  1. S. Hitz and R. Prins, J. Catal., 168, 194 (1997) https://doi.org/10.1006/jcat.1997.1659
  2. K. Moller and T. Bein, Chem. Mater., 10, 2950 (1998) https://doi.org/10.1021/cm980243e
  3. J. S. Beck, J. C. Vartuli, G. S. Kennedy, C. T. Kresge, W. J. Roth, and S. E. Schramm, Chem. Mater., 6, 1816 (1994) https://doi.org/10.1021/cm00046a040
  4. S. Liu, Q. Wang, P. V. D. Voort, P. Cool, E. F. Vansant, and M. Jiang, J. Magn. Magn. Mater., 280, 31 (2004) https://doi.org/10.1016/j.jmmm.2004.02.019
  5. Y. Wan, J. Ma, Z. Wang, W. Zhou, and S. Kaliaguine, J. Catal., 227, 242 (2004) https://doi.org/10.1016/j.jcat.2004.07.016
  6. R. Wojcieszak, S. Monteverdi, M. Mercy, I. Nowak, M. Ziolek, and M. M. Bettahar, Appt. Catal. A: Gen., 268, 241 (2004)
  7. S. Vetrivel and A. Pandurangan, J. Mol. Catal. A-Chem., 217, 165 (2004) https://doi.org/10.1016/j.molcata.2004.03.022
  8. Y. Chen, D. Ciuparu, S. Lim, Y. Yang, G. L. Haller, and L. Pfefferle, J. Catal., 225, 453 (2004) https://doi.org/10.1016/j.jcat.2004.04.022
  9. S. Vetrivel and A. Pandurangan, Appl. Catal. A: Gen., 264, 243 (2004) https://doi.org/10.1016/j.apcata.2003.12.047
  10. M. Morita, T. Ishii, M. Baba, D. Rau, M. Iwamura, and H. Kuroda, J. Lumin., 108, 389 (2004) https://doi.org/10.1016/j.jlumin.2004.01.082
  11. D. W. Breck, John Wiley & Sons, New York (1974)
  12. S. Biz and M. L. Occelli, Catal. Rev. Sci. Eng., 40, 329 (1998) https://doi.org/10.1080/01614949808007111
  13. R. Q. Long and R. T. Yang, lnd. Eng. Chem. Res., 38, 873 (1999) https://doi.org/10.1021/ie980337y
  14. J. Eswaramoorthi, V. Sundarnmurthy, and N. Lingappan, Microporous Mesoporous Mater., 71, 109 (2004) https://doi.org/10.1016/j.micromeso.2004.03.016
  15. R. Ryoo, C. H. Ko, and J. S. Park, Chem. Commun., 15, 1413 (1999)
  16. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985) https://doi.org/10.1351/pac198557040603
  17. M. Karthik, A. K. Tripathi, N. M. Gupta, A. Vinu, M. Hartmann, M. Palanichamy, and V. Murugesan, Appl. Catal. A: General., 268, 139 (2004) https://doi.org/10.1016/j.apcata.2004.03.028
  18. H. G. Lee, M. J. Shim, and S. W. Kim, J. Korean Ind. Eng. Chem., 6, 49 (1995)
  19. P. Karandikar, M. Agashe, K. Vijayamohanan, and A. J. Chandwadkar, Appl. Catal. A: Gen., 257, 133 (2004) https://doi.org/10.1016/j.apcata.2003.07.007
  20. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938) https://doi.org/10.1021/ja01269a023
  21. G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16, 470 (1983) https://doi.org/10.1252/jcej.16.470
  22. B. C. Lippens and J. H. de Boer, J. Catal., 4, 319 (1965) https://doi.org/10.1016/0021-9517(65)90307-6
  23. C. E. Bronnimann, R. C. Zeigler, and G. E. Maciel, J. Am. Chem. Soc., 110, 2023 (1988) https://doi.org/10.1021/ja00215a001
  24. A. J. Mcfarlan and B. A. Morrow, J. Phys. Chem., 95, 5388 (1991) https://doi.org/10.1021/j100167a009
  25. S. Chuang, D. R. Kinney, C. E. Bronnimann, R. C. Zeigler, and G. E. Macial, J. Phys. Chem., 96, 4072 (1992)
  26. S. J. Park and K. D. Kim, J. Colloid Interface Sei., 218, 341 (1999)
  27. G. Delahay, S. Kieger, N. Tanchoux, P. Trens, and B. Coq, Appl. Catal. B: Environ., 52, 251 (2004) https://doi.org/10.1016/j.apcatb.2004.04.008
  28. S. J. Park, B. R. Jun, and J. Kawasaki, J. Korean lnd. Eng. Chem., 15, 11 (2004)
  29. S. J. Park and J. S. Shin, J. Colloid Inteiface Sci., 264, 39 (2003)