Characterization of Rice Mutants with Enhanced Susceptibility to Rice Blast

  • Kim, Hye-Kyung (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Sang-Kyu (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University) ;
  • Cho, Jung-Il (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Sichul (Pohang University of Science and Technology) ;
  • An, Gynheung (Pohang University of Science and Technology) ;
  • Jwa, Nam-Soo (Department of Molecular Biology, College of Natural Science, Sejong University) ;
  • Kim, Byung-Ryun (National Institute of Crop Sciences, Rural Development Administration) ;
  • Cho, Young-Chan (National Institute of Crop Sciences, Rural Development Administration) ;
  • Han, Seong-Sook (National Institute of Crop Sciences, Rural Development Administration) ;
  • Bhoo, Seong-Hee (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Youn-Hyung (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University) ;
  • Hong, Yeon-Kyu (Yeongnam Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Yi, Gihwan (Yeongnam Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Dae-Sup (Turf & Environment Research Institute, Samsung Everland Inc.) ;
  • Hahn, Tae-Ryong (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University) ;
  • Jeon, Jong-Seong (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
  • Received : 2005.07.14
  • Accepted : 2005.08.29
  • Published : 2005.12.31

Abstract

As a first step towards identifying genes involving in the signal transduction pathways mediating rice blast resistance, we isolated 3 mutants lines that showed enhanced susceptibility to rice blast KJ105 (91-033) from a T-DNA insertion library of the japonica rice cultivar, Hwayeong. Since none of the susceptible phenotypes co-segregated with the T-DNA insertion we adapted a map-based cloning strategy to isolate the gene(s) responsible for the enhanced susceptibility of the Hwayeong mutants. A genetic mapping population was produced by crossing the resistant wild type Hwayeong with the susceptible cultivar, Nagdong. Chi-square analysis of the $F_2$ segregating population indicated that resistance in Hwayeong was controlled by a single major gene that we tentatively named Pi-hy. Randomly selected susceptible plants in the $F_2$ population were used to build an initial map of Pi-hy. The SSLP marker RM2265 on chromosome 2 was closely linked to resistance. High resolution mapping using 105 $F_2$ plants revealed that the resistance gene was tightly linked, or identical, to Pib, a resistance gene with a nucleotide binding sequence and leucine-rich repeats (NB-LRR) previously isolated. Sequence analysis of the Pib locus amplified from three susceptible mutants revealed lesions within this gene, demonstrating that the Pi-hy gene is Pib. The Pib mutations in 1D-22-10-13, 1D-54-16-8, and 1C-143-16-1 were, respectively, a missense mutation in the conserved NB domain 3, a nonsense mutation in the 5th LRR, and a nonsense mutation in the C terminus following the LRRs that causes a small deletion of the C terminus. These findings provide evidence that NB domain 3 and the C terminus are required for full activity of the plant R gene. They also suggest that alterations of the resistance gene can cause major differences in pathogen specificity by affecting interactions with an avirulence factor.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Allen, R. L., Bittner-Eddy, P. D., Grenville-Briggs, L. J., Meitz, J. C., Rehmany, A. P., et al. (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306, 1957-1960 https://doi.org/10.1126/science.1104022
  2. An, S., Park, S., Jeong, D. H., Lee, D. Y., Kang, H. G., et al. (2003) Generation and analyses of end-sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047 https://doi.org/10.1104/pp.103.030478
  3. Bai, J., Pennill, L. A., Ning, J., Lee, S. W., Ramalingam, J., et al. (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12, 1871-1884 https://doi.org/10.1101/gr.454902
  4. Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S. P. (1997) Signaling in plant-microbe interactions. Science 276, 726-733 https://doi.org/10.1126/science.276.5313.726
  5. Bell, C. J. and Ecker, J. R. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137-144 https://doi.org/10.1006/geno.1994.1023
  6. Bonas, U. and Lahaye, T. (2002) Plant disease resistance triggered by pathogen-derived molecules, refined models of specific recognition. Curr. Opin. Microbiol. 5, 44-50 https://doi.org/10.1016/S1369-5274(02)00284-9
  7. Bonman, J. M. (1992) Durable resistance to rice blast diseaseenvironmental influences. Euphytica 63, 115-123 https://doi.org/10.1007/BF00023917
  8. Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., et al. (2000) tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12, 2033-2046 https://doi.org/10.1105/tpc.12.11.2033
  9. Chauhan, R. S., Farman, M. L., Zhang, H. B., and Leong, S. A. (2002) Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genom. 267, 603-612 https://doi.org/10.1007/s00438-002-0691-4
  10. Chen, D. H. and Ronald, P. C. (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17, 53-57 https://doi.org/10.1023/A:1007585532036
  11. Chen, D. H., Zeigler, R. S., Ahn, S. W., and Nelson, R. J. (1996) Phenotypic characterization of the rice blast resistance gene Pi2(t). Plant Dis. 80, 52-56 https://doi.org/10.1094/PD-80-0052
  12. Chu, Z., Ouyang, Y., Zhang, J., Yang, H., and Wang, S. (2004) Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Mol. Genet. Genom. 271, 111-120 https://doi.org/10.1007/s00438-003-0964-6
  13. Dangl, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defense responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  14. DeClerck, G., Schneider, D., Cartinhour, S., Ware, D., and Stein, L. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 257-279 https://doi.org/10.1093/dnares/9.6.257
  15. Dinesh-Kumar, S. P., Tham, W.-H., and Baker, B. J. (2000) Structure- function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA 97, 14789-14794
  16. Eckardt, N. A. and Innes, R. (2003) Resistance rodeo, rounding up the full complement of Arabidopsis NBS-LRR genes. Plant Cell 15, 806-?807 https://doi.org/10.1105/tpc.150470
  17. Eulgem, T. (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 10, 71-88 https://doi.org/10.1016/j.tplants.2004.12.006
  18. Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., et al. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253-15258
  19. Flor, H. H. (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275-296 https://doi.org/10.1146/annurev.py.09.090171.001423
  20. Fujino, K., Sekiguchi, H., Sato, T., Kiuchi, H., Nonoue, Y., et al. (2004) Mapping of quantitative trait loci controlling lowtemperature germinability in rice (Oryza sativa L.). Theor. Appl. Genet. 108, 794-799 https://doi.org/10.1007/s00122-003-1509-4
  21. Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., et al. (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843-846 https://doi.org/10.1126/science.7638602
  22. Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., et al. (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435, 1122-1125 https://doi.org/10.1038/nature03630
  23. Hammond-Kosack, K. E. and Jones, J. D. G. (1997) Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575-607 https://doi.org/10.1146/annurev.arplant.48.1.575
  24. Hammond-Kosack, K. E. and Parker, J. E. (2003) Deciphering plant-pathogen communication, Fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177-193 https://doi.org/10.1016/S0958-1669(03)00035-1
  25. Han, C. U., Lee, C. H., Jang, K. S., Choi, G. J., Lim, H. K., et al. (2004) Identification of rice genes induced in a rice blastresistant mutant. Mol. Cells 17, 462-468
  26. Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Jeong, D. H., et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
  27. Jeon, J. S., Chen, D., Yi, G. H., Wang, G. L., and Ronald, P. C. (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Genet. Genom. 269, 280-289
  28. Jiang, J. and Wang, S. (2002) Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice. Mol. Genet. Genom. 268, 249-252 https://doi.org/10.1007/s00438-002-0742-x
  29. Jones, D. A. and Jones, J. D. G. (1997) The role of leucine-rich repeat proteins in plant defences. Adv. Bot. Res. 24, 91-167
  30. Katayose, Y. and Sasaki, T. (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19, 55- 64 https://doi.org/10.1046/j.1365-313X.1999.00498.x
  31. Keen, N. T. (1990) Gene-for-gene complementarity in plantpathogen interactions. Annu. Rev. Genet. 24, 447-463 https://doi.org/10.1146/annurev.ge.24.120190.002311
  32. Kobe, B. and Deisenhofer, J. (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183-186 https://doi.org/10.1038/374183a0
  33. Kobe, B. and Kajava, A. V. (2001) The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725-732 https://doi.org/10.1016/S0959-440X(01)00266-4
  34. Martin, G. B., Bogdanove, A. J., and Sessa, G. (2003) Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23-61 https://doi.org/10.1146/annurev.arplant.54.031902.135035
  35. McCouch, S. R., Chen, X., Panaud, O., Temnykh, S., Xu, Y., et al. (1997) Microsatellite marker development, mapping and applications in rice. Plant Mol. Biol. 35, 89-99 https://doi.org/10.1023/A:1005711431474
  36. McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., et al. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 199-207 https://doi.org/10.1093/dnares/9.6.199
  37. Meyers, B. C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R. W. (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-834 https://doi.org/10.1105/tpc.009308
  38. Panaud, O., Chen, X., and McCouch, S. R. (1995) Frequency of microsatellite sequences in rice (Oryza sativa L). Genome 38, 1170-1176 https://doi.org/10.1139/g95-155
  39. Saraste, M., Sibbad, P. R., and Wittinghofer, A. (1990) The Ploop- a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-434 https://doi.org/10.1016/0968-0004(90)90281-F
  40. Shirano, Y., Kachroo, P., Shah, J., and Klessig, D. F. (2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14, 3149-3162 https://doi.org/10.1105/tpc.005348
  41. Somssich, I. E. and Halbrock, K. (1998) Pathogen defense in plants a paradigm of biological complexity. Trends Plant Sci. 3, 86-90 https://doi.org/10.1016/S1360-1385(98)01199-6
  42. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G. (1995) Molecular genetics of plant disease resistance. Science 268, 661-667 https://doi.org/10.1126/science.7732374
  43. Tabien, E., Li, Z., Paterson, H., Marchetti, A., Stansel, W., et al. (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor. Appl. Genet. 105, 313-324 https://doi.org/10.1007/s00122-002-0940-2
  44. Takken, F. L. W. and Joosten, M. A. H. J. (2000) Plant resistance genes, their structure, function and evolution. Eur. J. Plant Pathol. 106, 699-713 https://doi.org/10.1023/A:1026571130477
  45. Tao, Y., Yuan, F., Leister, R. T., Ausubel, F. M., and Katagiri, F. (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12, 2541-2554 https://doi.org/10.1105/tpc.12.12.2541
  46. Traut, T. W. (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide- binding sites. Eur. J. Biochem. 222, 9-19 https://doi.org/10.1111/j.1432-1033.1994.tb18835.x
  47. Veronese, P. (2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol. 131, 1580-1590 https://doi.org/10.1104/pp.102.013417
  48. Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., et al. (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19, 55-64 https://doi.org/10.1046/j.1365-313X.1999.00498.x
  49. Ware, D. H., Jaiswal, P., Ni, J., Yap, I. V., Pan, X., et al. (2002) Gramene, a tool for grass genomics. Plant Physiol. 130, 1606-1613 https://doi.org/10.1104/pp.015248
  50. Yi, G., Lee, S. K., Hong, Y. K., Cho, Y. C., Nam, M. H., et al. (2004) Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor. Appl. Genet. 109, 978-985 https://doi.org/10.1007/s00122-004-1707-8