Angiotensin II Promotes Smooth Muscle Cell Proliferation and Migration through Release of Heparin-binding Epidermal Growth Factor and Activation of EGF-Receptor Pathway

  • Yang, Xiaoping (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming) ;
  • Zhu, Mei J. (Department of Animal Science, University of Wyoming) ;
  • Sreejayan, N. (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming) ;
  • Ren, J. (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming) ;
  • Du, Min (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming)
  • Received : 2005.06.14
  • Accepted : 2005.07.13
  • Published : 2005.10.31

Abstract

Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 ($20{\mu}M$), a specific inhibitor of MMPs or AG1478 ($10{\mu}M$), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.

Keywords

References

  1. Adachi, T., Cui, C. H., Kanda, A., Kayaba, H., Ohta, K., et al. (2004) Activation of epidermal growth factor receptor via CCR3 in bronchial epithelial cells. Biochem. Biophys. Res. Commun. 320, 292-296 https://doi.org/10.1016/j.bbrc.2004.05.172
  2. Andresen, B. T., Linnoila, J. J., Jackson, E. K., and Romero, G. G. (2003) Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells. Hypertension 41, 781-786 https://doi.org/10.1161/01.HYP.0000049426.61176.DF
  3. Arrieta, O., Guevara, P., Escobar, E., Garcia-Navarrete, R., Pineda, B., et al. (2005) Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br. J. Cancer 92, 1247-1252 https://doi.org/10.1038/sj.bjc.6602483
  4. Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., et al. (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35-40 https://doi.org/10.1038/nm0102-35
  5. Bokemeyer, D., Schmitz, U., and Kramer, H. J. (2000) Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int. 58, 549-558
  6. Braunwald, E. (1997) Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. New. Engl. J. Med. 337, 1360-1369 https://doi.org/10.1056/NEJM199711063371906
  7. Brown, C., Pan, X., and Hassid, A. (1999) Nitric oxide and Ctype atrial natriuretic peptide stimulate primary aortic smooth muscle cell migration via a cGMP-dependent mechanism: relationship to microfilament dissociation and altered cell morphology. Circ. Res. 84, 655-667 https://doi.org/10.1161/01.RES.84.6.655
  8. Cussac, D., Schaak, S., Denis, C., and Paris, H. (2002) alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J. Biol. Chem. 277, 19882-19888 https://doi.org/10.1074/jbc.M110142200
  9. Du, M., Zhu, M. J., Means, W. J., Hess, B. W., and Ford, S. P. (2004). Effect of nutrient restriction on calpain and calpastatin content of skeletal muscle from cows and fetuses. J. Anim. Sci. 82, 2541-2547
  10. Eguchi, S., Frank, G. D., Mifune, M., and Inagami, T. (2003) Metalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling. Biochem. Soc. Trans. 31, 1198-1202 https://doi.org/10.1042/BST0311198
  11. Fischer, O. M., Hart, S., Gschwind, A., and Ullrich, A. (2003) EGFR signal transactivation in cancer cells. Biochem. Soc. Trans. 31, 1203-1208 https://doi.org/10.1042/BST0311203
  12. Fujiyama, S., Matsubara, H., Nozawa, Y., Maruyama, K., Mori, Y., et al. (2001) Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ. Res. 88, 2-29 https://doi.org/10.1161/01.RES.88.1.2
  13. Hama, K., Ohnishi, H., Yasuda, H., Ueda, N., Mashima, H., et al. (2004) Angiotensin II stimulates DNA synthesis of rat pancreatic stellate cells by activating ERK through EGF receptor transactivation. Biochem. Biophys. Res. Commun. 315, 905-911 https://doi.org/10.1016/j.bbrc.2004.01.155
  14. Hao, L., Du, M., Lopez-Campistrous, A., and Fernandez-Patron, C. (2004) Agonist-induced activation of matrix metalloproteinase- 7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ. Res. 94, 68-76 https://doi.org/10.1161/01.RES.0000109413.57726.91
  15. Kalmes, A., Vesti, B. R., Daum, G., Abraham, J. A., and Clowes, A. W. (2000) Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ. Res. 87, 92-98 https://doi.org/10.1161/01.RES.87.2.92
  16. Kim, S. and Iwao, H. (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol. Rev. 52, 11-34
  17. Kuhlmann, C. R., Schafer, M., Li, F., Sawamura, T., Tillmanns, H., et al. (2003) Modulation of endothelial Ca(2+)-activated K(+) channels by oxidized LDL and its contribution to endothelial proliferation. Cardiovasc. Res. 60, 626-634 https://doi.org/10.1016/j.cardiores.2003.08.010
  18. Leskinen, M. J., Kovanen, P. T., and Lindstedt, K. A. (2003) Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells--a potential mechanism for the weakening and rupture of atherosclerotic plaques. Biochem. Pharmacol. 66, 1493-1498 https://doi.org/10.1016/S0006-2952(03)00503-3
  19. Liu, J., Liao, Z., Camden, J., Griffin, K. D., Garrad, R. C., et al. (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J. Biol. Chem. 279, 8212-8218 https://doi.org/10.1074/jbc.M312230200
  20. Lupia, E., Pucci, A., Peasso, P., Merlo, M., Baron, P., et al. (2003) Intra-plaque production of platelet-activating factor correlates with neoangiogenesis in human carotid atherosclerotic lesions. Int. J. Mol. Med. 12, 327-334
  21. Marra, D. E., Simoncini, T., and Liao, J. K. (2000) Inhibition of vascular smooth muscle cell proliferation by sodium salicylate mediated by upregulation of p21(Waf1) and p27(Kip1). Circulation 102, 2124-2130 https://doi.org/10.1161/01.CIR.102.17.2124
  22. Marx, J. (2003). Heart disease. How to subdue a swelling heart. Science 300, 1492-1496 https://doi.org/10.1126/science.300.5625.1492
  23. Montiel, M., de la Blanca, E. P., and Jimenez, E. (2005) Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 327, 971-978 https://doi.org/10.1016/j.bbrc.2004.12.110
  24. Moriguchi, Y., Matsubara, H., Mori, Y., Murasawa, S., Masaki, H., et al. (1999) Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. Circ. Res. 84, 1073-1084 https://doi.org/10.1161/01.RES.84.9.1073
  25. Pierce, K. L., Tohgo, A., Ahn, S., Field, M. E., Luttrell, L. M., et al. (2001) Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J. Biol. Chem. 276, 23155-23160 https://doi.org/10.1074/jbc.M101303200
  26. Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., et al. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884-888 https://doi.org/10.1038/47260
  27. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809 https://doi.org/10.1038/362801a0
  28. Rossi, F., Ferraresi, A., Romagni, P., Silvestroni, L., and Santiemma, V. (2002) Angiotensin II stimulates contraction and growth of testicular peritubular myoid cells in vitro. Endocrinology 143, 3096-3104 https://doi.org/10.1210/en.143.8.3096
  29. Ruiz-Ortega, M., Ruperez, M., Esteban, V., and Egido, J. (2003) Molecular mechanisms of angiotensin II-induced vascular injury. Curr. Hypertens. Rep. 5, 73-79 https://doi.org/10.1007/s11906-003-0014-0
  30. Sah, J. F., Balasubramanian, S., Eckert, R. L., and Rorke, E. A. (2004) Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J. Biol. Chem. 279, 12755-12762 https://doi.org/10.1074/jbc.M312333200
  31. Saito, S., Frank, G. D., Motley, E. D., Dempsey, P. J., Utsunomiya, H., et al. (2002) Metalloprotease inhibitor blocks angiotensin II-induced migration through inhibition of epidermal growth factor receptor transactivation. Biochem. Biophys. Res. Commun. 294, 1023-1029 https://doi.org/10.1016/S0006-291X(02)00595-8
  32. Schafer, B., Gschwind, A., and Ullrich, A. (2004) Multiple Gprotein- coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23, 991-999 https://doi.org/10.1038/sj.onc.1207278
  33. Shah, B. H. and Catt, K. J. (2003) A central role of EGF receptor transactivation in angiotensin II -induced cardiac hypertrophy. Trends Pharmacol. Sci. 24, 239-244 https://doi.org/10.1016/S0165-6147(02)00005-6
  34. Shah, B. H. and Catt, K. J. (2004) Matrix metalloproteinasedependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrinol. Metab. 15, 241-243 https://doi.org/10.1016/j.tem.2004.06.011
  35. Song, K., Shiota, N., Takai, S., Takashima, H., Iwasaki, H., et al. (1998) Induction of angiotensin converting enzyme and angiotensin II receptors in the atherosclerotic aorta of highcholesterol fed Cynomolgus monkeys. Atherosclerosis 138, 171-182 https://doi.org/10.1016/S0021-9150(98)00021-5
  36. Sreejayan, N., Lin, Y., and Hassid, A. (2002) NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B-mediated mechanism. Arterioscler. Thromb. Vasc. Biol. 22, 1086-1092 https://doi.org/10.1161/01.ATV.0000020550.65963.E9
  37. Tamarat, R., Silvestre, J. S., Durie, M., and Levy, B. I. (2002) Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab. Invest. 82, 747-756
  38. Touyz, R. M., Cruzado, M., Tabet, F., Yao, G., Salomon, S., et al. (2003) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can. J. Physiol. Pharmacol. 81, 159-167 https://doi.org/10.1139/y02-164
  39. Winter, P. M., Morawski, A. M., Caruthers, S. D., Fuhrhop, R. W., Zhang, H., et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3- integrin-targeted nanoparticles. Circulation 108, 2270-2274 https://doi.org/10.1161/01.CIR.0000093185.16083.95
  40. Yang, B. C., Phillips, M. I., Mohuczy, D., Meng, H., Shen, L., et al. (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler. Thromb. Vasc. Biol. 18, 1433-1439 https://doi.org/10.1161/01.ATV.18.9.1433
  41. Yigzaw, Y., Poppleton, H. M., Sreejayan, N., Hassid, A., and Patel, T. B. (2003) Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. J. Biol. Chem. 278, 284-288 https://doi.org/10.1074/jbc.M210359200
  42. Zhao, Y., Liu, J., Li, L., Liu, L., and Wu, L. (2005) Role of Ras/PKCzeta/MEK/ERK1/2 signaling pathway in angiotensin II-induced vascular smooth muscle cell proliferation. Regul. Pept. 128, 43-50 https://doi.org/10.1016/j.regpep.2004.12.012