Effect of Wood Material Type on Biocide Retention and Distribution Using Supercritical Fluid Impregnation

  • Kang, Sung-Mo (Division Quality Control and Standardization Team, Korea Forest Research Institute) ;
  • Jung, Doo-Jin (Division Quality Control and Standardization Team, Korea Forest Research Institute) ;
  • Koo, Ja-Oon (Division Quality Control and Standardization Team, Korea Forest Research Institute) ;
  • Morrell, J.J. (Wood Science and Engineering, Oregon State University 119 Richardson Hall)
  • Received : 2005.06.11
  • Accepted : 2005.07.07
  • Published : 2005.09.25

Abstract

The effect of wood material type on biocide retention and distribution during supercritical fluid impregnation was assessed using three different wood types including solid wood, plywood and oriented strand board (OSB). The result revealed that biocide treatability differed with structural composition and permeability of the various materials. Low treatability of plywood might be attributed to interferences of glue line limiting fluid movement. OSB samples showed higher biocide retentions, resulting from the presence of interconnecting gaps permitting more open flow.

Keywords

References

  1. Acda, M. N. 1995. Supercritical fluid impregnation of wood based composites. Ph. D. dissertation, Oregon State University. Corvallis, OR, p. 160
  2. Acda, M. N., J. J. Morrell, and K. L. Levien. 1997a. Effects of supercritical fluid treatments on physical and mechanical properties of wood-based composites. Wood and Fiber Science 29(2): 121-130
  3. Acda, M. N., J. J. Morrell, and K. L. Levien. 1997b. Effects of process variables on supercritical fluid impregnation of composites with tebuconazole. Wood and Fiber Science 29(3):282-290
  4. Acda, M. N., J. J. Morrell, and K. L. Levien. 2001. Supercritical fluid impregnation of selected wood species with tebuconazole. Wood Science and Technology. 35: 127-136 https://doi.org/10.1007/s002260100086
  5. Bolton, A. J. and P. E. Humphrey. 1994. The permeability of wood-based composite materials. Part I. A review of the literature and some unpublished work. Holzforschung 48: (Suppl.) 95-100 https://doi.org/10.1515/hfsg.1994.48.s1.95
  6. Brogle, H. (1982) $CO_2$ in solvent extraction. Chemistry and Industry (19): 385 - 390
  7. Denisov, O. B., P. P Anisov, and P. E. Zuban. 1975. Untersuchungen der PermeabiIitaet von Spanvliesen. Holztechnologie 14(1): 43-46
  8. Futo, L. P. 1970. Pruefung der Luft-, Dampf- und Wasserdurchlaessigkeit von Holzwerkstoffen (Testing the air-, steam- and water permeability of wood based materials). Holz als Roh- und Werkstoff. 28(11): 423-429 https://doi.org/10.1007/BF02621464
  9. Haas, G. Y., A. Steffen, and A. Fruehwald. 1998. Untersuchungen zur Permeabilitaet von Faser-, Span- und OSB-Matten fuer Gase. Holz als Rohund Werkstoff 56: 386-392 https://doi.org/10.1007/s001070050338
  10. Hoyle, R. J. Jr., R. Y. Itani, and J. T. Anderson. 1994. The effect of moisture cycling on creep of small glued laminated beams. Wood Fiber Sci. 26(4): 556-562
  11. Janssen's product information sheet, n. d. Retrieved May 1, 2002. from http://www.janssenpharmaceutica.be/pmp/Pages/database/$Evipol/$leaflets/PIS%20Evipol%20technical.pdf
  12. Kang, S. 2002. Supercritical fluid impregnation with biocides of wood using temperature reduction. Ph.D. Dissertation, Oregon State Univ., Corvallis, OR. p. 126
  13. Krukonis, Y. J. 1988. Processing with supercritical fluids: overview and applications. ACS Symposium Series. 366: 27-43. America Chemical Society, Washington D.C
  14. Lehmann, W. F. 1972. Moisture-stability relationship in wood-based composition boards. For. Prod. J. 22(7): 53-59
  15. Muin, M., A. Adachi, and K. Tsunoda. 2001. Applicability of supercritical carbon dioxide to the preservative treatment of wood-based composites. Int. Res. Group on Wood Pres. Doc. No. IRG/WP/01-40199. Stockholm, Sweden. p. 5
  16. Oberdorfer, Georg. 2001. Development of internal pressure during supercritical fluid impregnation of wood composites and its effect on material properties. M.S. Dissertation, University of Agricultural Science, Vienna
  17. Sahle-Demessie, E. 1994. Deposition of chemicals in semi-porous solids using supercritical fluid carriers. Ph.D. dissertation, Oregon State University, Corvallis, OR, p. 301
  18. Schneider, P. F. 1999. Pressure measurement in wood as a method to understand pressure impregnation processes: Bethell, Rueping, Lowry, and supercritical carbon dioxide. Ph.D. Dissertation, Oregon State Univ., Corvallis, OR. p. 243
  19. Tsunoda and Muin. 2003. Preservative treatment of wood-based composites with mixture formulation of IPBC-silafluopen using supercritical carbon dioxide as a carrier gas. Int. Res. Group on Wood Pres. Doc. No. IRG/ WP/03-40251. Stockholm, Sweden. p. 8
  20. United Sates Department of Agriculture (USDA). 1999. Wood Handbook: Wood as an engineering material. USDA. Washington, D.C. p. 474
  21. Zavala, D. and P.E. Humphrey. 1996. Hot pressing veneer-based products: the interaction of physical process. Forest Prod. J. 46(1): 69-77