Synthesis and Solution Properties of Water Soluble Polyester for Metal-Working Fluids (II)

금속가공유용 수용성 폴리에스테르의 합성 및 용액특성(II)

  • Yoon, Yoo-Jung (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Wun (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology) ;
  • Chung, Keun-Wo (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology) ;
  • Hwang, Do-Huak (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology)
  • 윤유정 (한국화학연구원 신화학연구단) ;
  • 김영운 (한국화학연구원 신화학연구단) ;
  • 정근우 (한국화학연구원 신화학연구단) ;
  • 황도혁 (한국화학연구원 신화학연구단)
  • Received : 2005.08.09
  • Accepted : 2005.11.01
  • Published : 2005.12.10

Abstract

Polyethylene glycol esters (PEG-esters) were synthesized by condensation reaction of dicarboxylic acid such as adipic acid and sebacic acid and several PEGs. The PEG-esters were analyzed by FT-IR, $^1H-NMR$ and HPLC for structure analysis, and by GPC for molecular weight. Through the analysis of surface tension, critical micelle concentration (CMC), aluminum contact angle of water solution containing the PEG-ester, the synthetic PEG-esters are proven to exhibit surfactant properties. The surface tension ranged from 45 to 50 dyn/cm depended on the concentration and structures of the PEG-esters. The surface tension of PEG-esters with sebacic acid moiety and short polyoxyethylene unit resulted in lower value than that of PEG-ester with adipic acid moiety and long polyoxyethylene unit. The CMC of water solution containing 2.5 wt% PEG-ester with sebacic acid moiety estimated at $0.9{\times}10^{-5}{\sim}5.3{\times}10^{-3}mol/L$ depended on the structures of PEG-esters. The CMC of PEG-esters with long polyoxyethlene unit showed a higher value than that of PEG-esters with short polyoxyethylene unit. Meanwhile, the CMC of PEG-esters with adipic acid moiety was not distinct due to their high hydrophilic character. As the results of contact angle and cutting time aginst aluminum, the contact angle ranged from $45^{\circ}$ to $53^{\circ}$ depended on the concentration of PEG-esters. The cutting time of aluminum showed the shortest value at CMC, but the longest value above CMC. This fact indicates that the CMC of PEG-esters is a very important factor in drilling aluminum.

아디픽산 및 세바식산의 이염기산을 폴리에틸렌글리콜(PEG)과 축합 반응하여 여러종류의 PEG-ester를 합성하였다. 합성된 PEG-ester의 화학적 구조 및 분자량을 FT-IR, $^1H-NMR$, HPLC 및 GPC에 의하여 분석하였다. 또한, 임계미셀농도(CMC), 표면장력, 알루미늄판에 대한 접촉각 등을 통하여 수용액상에서 계면활성제의 역할을 함을 알 수 있었다. PEG-ester의 농도에 따라 표면장력은 72.5에서 45~50 dyne/cm로 감소함을 알 수 있었고, 세바식산을 사용하여 합성한 PEG-ester가 아디픽산을 사용하여 합성한 PEG-ester보다 같은 농도에서 낮은 표면장력을 나타내었다. CMC는 구조에 따라 차이를 나타내었는데 세바식산을 함유한 PEG-ester의 CMC는 $0.9{\times}10^{-5}{\sim}5.3{\times}10^{-3}mol/L$로 폴리옥시알킬렌 단위체가 길어질수록 증가하였으며 아디픽산을 함유한 PEG-ester의 경우, 변곡점을 뚜렷하게 관찰할 수가 없었다. 알루미늄에 대한 젖음성을 알루미늄 시편에 대한 접촉각을 측정하여 검토하였는 바, PEG-ester의 농도가 증가할수록 작아짐을 알 수 있었고 임계점을 관찰할 수가 있었다. 2.5 wt% PEG-ester를 함유한 수용액의 알루미늄에 대한 접촉각은 $45{\sim}53^{\circ}$이었으며 알루미늄 가공 절삭시간은 CMC를 나타내는 농도에서 가장 짧게 관찰되었으며 CMC 농도보다 큰 농도에서 길게 나타났다. 즉, 알루미늄을 가공할 때 PEG-ester의 CMC가 절삭성능에 중요한 영향을 미치는 것으로 판단되었다.

Keywords

References

  1. B. L. Riddle and E. M. Kipp, Lubr, Eng., 47, 991 (1991)
  2. S. Alexander, European Patent 0183050 (1986)
  3. Y. Wan, Q. Xue, and L. Cao, Synthetic Lubrication, 13, 375 (1997) https://doi.org/10.1002/jsl.3000130405
  4. N. M. Canter. J. J. Chaloupka, and G. J. Fischesser, Lubr. Eng., 44, 257 (1997)
  5. S. Wantanabe, H. Nakagawa, and Y. Ohmori, Torabirijisuto, 42, 81 (1997)
  6. H. Nakagawa, Y. Ohmori, S. Wantanabe, T. Fujita, and M. Sakamoto, Toraiborojisuto, 43, 436 (1998)
  7. D. Mayers, Surfactant Science and Techonology, 2, 12, VCR Pulishers, Inc., New York (1988)
  8. Y.-J. Yoon, Y.-W. Kim, K. Chung, and S.-H. Kim, J. Korean lnd Eng. Chem., 14, 89 (2003)
  9. M. J. Schick, S. M. Atlas, and F. R. Eirich, J. Phys. Chem., 66, 1326 (1962) https://doi.org/10.1021/j100813a027
  10. A. M. Al Sabagh, N. Gh. Kandil, A. M. Badawi, and H. EI-Sharkawy, Colloid and Surface A: Physicochemical and Engineering Aspects, 170, 127 (2000) https://doi.org/10.1016/S0927-7757(00)00475-1
  11. D. Mayers, Surfactant Science and Techonology, 2, 235, VCH Pulishers, Inc., New York (1988)
  12. O.-S. Lee, Finechemical Symposium, January, 115 (1991)
  13. O.-S. Lee, Finechemical Symposium, March, 1 (1993)
  14. F. P. Bowden and D Tabor, Fiction and Lubrication of Solid Part 1, Oxford Univ., London (1971)
  15. D. Y. kwok, T. Gietzelt, K. Grundke, H.-J. Jacobasch, and A. W. Neumann, Langimuir, 13, 2880 (1997) https://doi.org/10.1021/la9608021
  16. B. A. Starkweather, X. Zhang, and R. M. Counce, Ind. Eng. Res., 39, 362 (2000) https://doi.org/10.1021/ie980693g