A Combined Approach for Locating Box H/ACA snoRNAs in the Human Genome

  • Eo, Hae Seok (Program in Bioinformatics, Seoul National University) ;
  • Jo, Kwang Sun (JLLAB, Inc.) ;
  • Lee, Seung Won (JLLAB, Inc.) ;
  • Kim, Chang-Bae (National Genome Information Center, Korea Research Institute of Bioscinece and Biotechnology) ;
  • Kim, Won (School of Biological Sciences, Seoul National University)
  • Received : 2004.10.10
  • Accepted : 2005.04.06
  • Published : 2005.08.31

Abstract

A novel combined method for locating box H/ACA small nucleolar RNAs (snoRNAs) is described, together with a software tool. The method adopts both a probabilistic hidden Markov model (HMM) and a minimum free energy (MFE) rule, and filters possible candidate box H/ACA snoRNAs obtained from genomic DNA sequences. With our novel method 12 known box H/ACA snoRNAs, and one strong candidate were identified in 30 nucleolar protein genomic sequences.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K., Lam, Y. W., et al. (2002) Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1-11 https://doi.org/10.1016/S0960-9822(01)00650-9
  2. Bachellerie, J. P. and Cavaille, J. (1997) Guiding ribose methylation of rRNA. Trends Biochem. Sci. 22, 257-261 https://doi.org/10.1016/S0968-0004(97)01057-8
  3. Bachellerie, J. P., Cavaille, J., and Hüttenhofer, A. (2002) The expanding snoRNA world. Biochimie 84, 775-790 https://doi.org/10.1016/S0300-9084(02)01402-5
  4. Decatur, W. A. and Fournier, M. J. (2003) RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278, 695-698 https://doi.org/10.1074/jbc.R200023200
  5. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998) Markov chains and hidden Markov models; in Biological Sequence Analysis, pp. 46-79, Cambridge University Press, Cambridge UK
  6. Eddy, S. R. (1999) Noncoding RNA genes. Curr. Opin. Genet. Dev. 9, 695-699 https://doi.org/10.1016/S0959-437X(99)00022-2
  7. Eddy, S. R. (2001) Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919-929 https://doi.org/10.1038/35103511
  8. Edvardsson, S., Gardner, P. P., Poole, A. M., Hendy, M. D., Penny, D., et al. (2003) A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction. Bioinformatics 19, 865-873 https://doi.org/10.1093/bioinformatics/btg080
  9. Eliceiri, G. L. (1999) Small nucleolar RNAs. Cell. Mol. Life Sci. 56, 22-31 https://doi.org/10.1007/s000180050003
  10. Fontana, W., Konings, D. A. M., Stadler, P. F., and Schuster, P. (1993) Statistics of RNA secondary structures. Biopolymers 33, 1389-1404 https://doi.org/10.1002/bip.360330909
  11. Ganot, P., Caizergues-Ferrer, M., and Kiss, T. (1997) The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941-956 https://doi.org/10.1101/gad.11.7.941
  12. Grundy, W. N., Bailey, T. L., Elkan, C. P., and Baker, M. E. (1997) Meta-MEME: Motif-based hidden markov models of protein families. Comput. Appl. Biosci. 13, 397-406
  13. Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429- 3431 https://doi.org/10.1093/nar/gkg599
  14. Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., et al. (1994) Fast folding and comparison of RNA secondary structures. Chemical Monthly 125, 167-188 https://doi.org/10.1007/BF00818163
  15. Kiss, A. M., Jady, B. E., Bertrand, E., and Kiss, T. (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24, 5797-5807 https://doi.org/10.1128/MCB.24.13.5797-5807.2004
  16. Kiss-Laszlo, Z., Henry, Y., Bachellerie, J., Caizergues-Ferrer, M., and Kiss, T. (1996) Site specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077-1088 https://doi.org/10.1016/S0092-8674(00)81308-2
  17. Krogh, A. (1998) An introduction to hidden Markov models for biological sequences; in Computational Methods in Molecular Biology, Salzberg, S. L., Searls, D. B., and Kasif, S. (eds.), pp. 45-63, Elsevier, Amsterdam
  18. Lafontaine, D. L. J. and Tollervey, D. (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23, 383-388 https://doi.org/10.1016/S0968-0004(98)01260-2
  19. Lane, B. G., Ofengand, J., and Gray, M. W. (1995) Pseudouridine and $O^{2'}$-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosomecatalyzed synthesis of the peptide bonds in proteins. Biochimie 77, 7-15 https://doi.org/10.1016/0300-9084(96)88098-9
  20. Leung, A. K. L., Andersen, J. S., Mann, M., and Lamond, A. I. (2003) Bioinformatic analysis of the nucleolus. Biochem. J. 376, 553-569 https://doi.org/10.1042/BJ20031169
  21. Lowe, T. M. and Eddy, S. R. (1999) A computational screen for methylation guide snoRNAs in yeast. Sciences 283, 1168- 1171
  22. Maden, B. E. H. and Wakeman, J. A. (1988) Pseudouridine distribution in mammalian 18S ribosomal RNA. A major cluster in the central region of the molecule. Biochem. J. 249, 459- 464
  23. Matzura, O. and Wennborg, A. (1996) RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bits Microsoft Windows. Comput. Appl. Biosci. 12, 247-249
  24. Nag, M. K., Thai, T. T., Ruff, E. A., Selvamurugan, N., Kunnimalaiyaan, M., et al. (1993) Genes for E1, E2, and E3 small nucleolar RNAs. Proc. Natl. Acad. Sci. USA 90, 9001-9005
  25. Ofengand, J. (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514, 17-25 https://doi.org/10.1016/S0014-5793(02)02305-0
  26. Ofengand, J. and Bakin, A. (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryote, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266, 246-268 https://doi.org/10.1006/jmbi.1996.0737
  27. Pruitt, K. D. and Maglott, D. R. (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 29, 137- 140 https://doi.org/10.1093/nar/29.1.137
  28. Scherl, A., Coute, Y., Deon, C., Calle, A., Kindbeiter, K., et al. (2002) Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100-4109 https://doi.org/10.1091/mbc.E02-05-0271
  29. Tollervey, D. and Kiss, T. (1997) Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9, 337-342 https://doi.org/10.1016/S0955-0674(97)80005-1
  30. Tycowski, K. T., Smith, C. M., Shu, M. D., and Steitz, J. A. (1996) A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. USA 93, 14480-14485
  31. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415 https://doi.org/10.1093/nar/gkg595
  32. Zuker, M. and Jacobson, A. B. (1995) 'Well-determined' regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nucleic Acids Res. 23, 2791-2798 https://doi.org/10.1093/nar/23.14.2791
  33. Zuker, M. and Jacobson, A. B. (1998) Using reliability information to annotate RNA secondary structures. RNA 4, 669-679 https://doi.org/10.1017/S1355838298980116