DOI QR코드

DOI QR Code

Identification and Characterization of Genes Differentially Expressed in the Resistance Reaction in Wheat Infected with Tilletia tritici, the Common Bunt Pathogen

  • Lu, Zhen-Xiang (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Gaudet, Denis A. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Frick, Michele (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Puchalski, Byron (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Genswein, Bernie (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Laroche, Andre (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
  • 발행 : 2005.07.31

초록

The differentially virulent race T1 of common bunt (Tilletia tritici) was used to inoculate the wheat lines Neepawa (compatible) and its sib BW553 (incompatible) that are nearly isogenic for the Bt-10 resistance gene. Inoculated crown tissues were used to construct a suppression subtractive hybridization (SSH) cDNA library. Of the 1920 clones arrayed from the SSH cDNA library, approximately 10% were differentially regulated. A total of 168 differentially up-regulated and 25 down-regulated genes were identified and sequenced; 71% sequences had significant homology to genes of known function, of which 59% appeared to have roles in cellular metabolism and development, 24% in abiotic/biotic stress responses, 3% involved in transcription and signal transduction responses. Two putative resistance genes and a transcription factor were identified among the up regulated sequences. The expression of several candidate genes including a lipase, two non-specific lipid transfer proteins (ns-LTPs), and several wheat pathogenesis-related (PR)-proteins, was evaluated following 4 to 32 days post-inoculation in compatible and incompatible interactions. Results confirmed the higher overall expression of these genes in resistant BW553 compared to susceptible Neepawa, and the differential up-regulation of wheat lipase, chitinase and PR-1 proteins in the expression of the incompatible interaction.

키워드

참고문헌

  1. Bryngelsson, T., Sommer-Knudsen, J., Gregersen, P. L., Collinge, D. B. and Thordal-Christensen, H. (1994) Purification, characterisation, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Mol. Plant-Microbe Interact. 7, 267-275 https://doi.org/10.1094/MPMI-7-0267
  2. Caldo, R. A., Nettleton, D. and Wise, R. P. (2004) Interactiondependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16, 2514-2258 https://doi.org/10.1105/tpc.104.023382
  3. Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U. and Vad, K. (1993) Plant chitinases. Plant J. 3, 31-40 https://doi.org/10.1046/j.1365-313X.1993.t01-1-00999.x
  4. Dangle, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defence response to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  5. de A. Gerhardt, L. B., Sachetto-Martins, G., Contarini, M. G., Sandroni, M., de P. Ferreira, R., de Lima, V. M., Cordeiro, M. C., de Oliveira, D. E. and Margis-Pinheiro, M. (1997) Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett. 419, 69-75 https://doi.org/10.1016/S0014-5793(97)01332-X
  6. den Hartog, M., Verhoef, N. and Munnik, T. (2003) Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol. 132, 311-317 https://doi.org/10.1104/pp.102.017954
  7. Diatchenko, L., Lau, Y. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025-6030 https://doi.org/10.1073/pnas.93.12.6025
  8. Douliez, J. P., Michon, T., Elmorjani, K. and Marion, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32, 1-20 https://doi.org/10.1006/jcrs.2000.0315
  9. Falk, A., Feys, B. J., Frost, L. N., Jones, J. D., Daniels, M. J. and Parker, J. E. (1999) EDS1, an essential component of R genemediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96, 3292-3297 https://doi.org/10.1073/pnas.96.6.3251
  10. Fernandez, J. A., Duran, R. and Schafer, J. F. (1978) Histological aspects of dwarf bunt resistance in wheat. Phytopathology 68, 1417-1421 https://doi.org/10.1094/Phyto-68-1417
  11. Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Gut-Rella, M., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10, 61-70 https://doi.org/10.1046/j.1365-313X.1996.10010061.x
  12. García-Olmedo, F., Molina, A., Alamillo, J. M. and Rodríguez-Palenzuéla, P. (1998) Plant defense peptides. Biopolymers 47, 479-491 https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K
  13. Gaudet, D. A., Puchalski, B. L., Kozub, G. C. and Schaalje, G. B. (1993) Susceptibility and resistance in Canadian spring wheat cultivars to common bunt (Tilletia tritici and T. laevis). Can. J. Plant Sci. 73, 1217-1224 https://doi.org/10.4141/cjps93-161
  14. Gaudet, D. A. and Puchalski, B. L. (1995) Influence of temperature on the expression of bunt resistance genes to races of common bunt (Tilletia tritici and T. laevis) in spring wheat differentials. Can. J. Plant Sci. 75, 745-749 https://doi.org/10.4141/cjps95-126
  15. Gaudet. D. A., Laroche, A., Frick, M., Davoren, J., Puchalski, B., and Ergon, A. (2000) Expression of plant defence-related (PR PRprotein) transcripts during hardening and dehardening of winter wheat. Physiol. Mol. Plant Path. 57, 15-24 https://doi.org/10.1006/pmpp.2000.0275
  16. Gaudet, D. A., Laroche, A., Frick, M., Huel, R. and Puchalski, B. (2003a) Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiol. Plant. 117, 1-11 https://doi.org/10.1034/j.1399-3054.2003.1170101.x
  17. Gaudet, D. A., Laroche, A., Frick, M., Huel, R. and Puchalski, B. (2003b) Plant development affects the cold-induced expression of plant defence-related transcripts in winter wheat. Physiol. Mol. Plant Path. 62, 175-184 https://doi.org/10.1016/S0885-5765(03)00025-0
  18. Glazebrook, J. (2001) Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr. Opin. Plant Biol. 4, 301-308 https://doi.org/10.1016/S1369-5266(00)00177-1
  19. Goates, B. J. (1996) Common bunt and dwarf bunt; in Bunt and Smut Disease of Wheat: Concepts and Methods of Disease Management, Wilcoxson, R. D. and Saari, E. E. (eds.), pp.12-25, CIMMYT, Mexico City, Mexico
  20. Graham, I. A. and Eastmond, P. J. (2002) Pathways of straight and branched fatty acid catabolism in higher plants. Prog. Lipid Res. 41, 156-181 https://doi.org/10.1016/S0163-7827(01)00022-4
  21. Guiderdoni, E., Cordero, M. J., Vignols, F., García-Garrido, J. M., Lescot, M., Tharreau, D., Meynard, D., Ferriére, N., Notteghem, J. L. and Delseny, M. (2002) Inducibility by pathogen attack and developmental regulation of the rice LTP1 gene. Plant Mol. Biol. 49, 683-699 https://doi.org/10.1023/A:1015595100145
  22. Hahlbrock, K., Bednarek, P., Ciolkowski, I., Hamberger, B., Heise, A., Liedgens, H., Logemann, E., Nurnberger, T., Schmelzer, E., Somssich, I. E. and Tan, J. (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc. Natl. Acad. Sci. USA 100, 14569-14576 https://doi.org/10.1073/pnas.0831246100
  23. Hoffmann, J. A. (1982) Bunt of wheat. Plant Dis. 66, 979-986 https://doi.org/10.1094/PD-66-979
  24. Hoffmann, J. A. and Metzger, R. J. (1976) Current status of virulence genes and pathogenic races of the wheat bunt fungi in the Northwestern USA. Phytopathology 66, 657-666 https://doi.org/10.1094/Phyto-66-657
  25. Howe, G. A. and Schilmiller, A. L. (2002) Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 5, 230-236 https://doi.org/10.1016/S1369-5266(02)00250-9
  26. Huckelhoven, R., Dechert, C., Trujillo, M. and Kogel, K. H. (2001) Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Mol. Biol. 47, 739-748 https://doi.org/10.1023/A:1013635427949
  27. Hughes, M. A., Dunn, M. A., Pearce, R. S., White, A. J. and Zhang, L. (1992) An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ. 15, 861-865 https://doi.org/10.1111/j.1365-3040.1992.tb02155.x
  28. Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M. and Glazebrook, J. (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96, 13583-13588 https://doi.org/10.1073/pnas.96.23.13583
  29. Keen, N. T. (2000) A century of plant pathology: a retrospective view on understanding host-parasite interactions. Ann. Rev. Phytopath. 38, 1-48 https://doi.org/10.1146/annurev.phyto.38.1.1
  30. Kim, C. Y., Lee, S. H., Park, H. C., Bae, C. G., Cheong, Y. H., Choi, Y. J., Han, C., Lee, S. Y., Lim, C. O. and Cho, M. J. (2000) Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol. Plant-Microbe Interact. 13, 470-474 https://doi.org/10.1094/MPMI.2000.13.4.470
  31. Lait, C. G., Alborn, H. T., Teal, P. E. and Tumlinson, J. H. (2003) Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc. Natl. Acad. Sci. USA 100, 7027-7032 https://doi.org/10.1073/pnas.1232474100
  32. Lowther, C. V. (1950) Chlamydospore germination in physiologic races of Tilletia caries and Tilletia foetida. Phytopathology 40, 590-603
  33. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419, 399-403 https://doi.org/10.1038/nature00962
  34. Maleck, L., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., Dangl, J. L. and Dietrich, R. A. (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26, 403-410 https://doi.org/10.1038/82521
  35. Martinez de Ilarduya, O., Xie, Q. and Kaloshian, I. (2003) Aphidinduced defense responses in Mi-1 mediated compatible and incompatible tomato interactions. Mol. Plant-Microbe Interact. 16, 699-708 https://doi.org/10.1094/MPMI.2003.16.8.699
  36. Molina, A. and García-Olmedo, F. (1993) Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 4, 983-991 https://doi.org/10.1046/j.1365-313X.1993.04060983.x
  37. Molina, A., Gorlach, J., Volrath, S. and Ryals, J. (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Mol. Plant-Microbe Interact. 12, 53-58 https://doi.org/10.1094/MPMI.1999.12.1.53
  38. Morris, S. W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C. C., Frederiksen, R. A., Bhandhufalck, A., Hulbert, S. and Uknes, S. (1998) Induced resistance responses in maize. Mol. Plant-Microbe Interact. 11, 643-658 https://doi.org/10.1094/MPMI.1998.11.7.643
  39. Munch-Garthoff, S., Nuhaus, J. M., Boller, T., Kemmerling, B. and Kogel, K. H. (1997) Expression of B-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated nearisogenic wheat lines showing Sr5- or Sr25-specified racespecific rust resistance. Planta 201, 235-244 https://doi.org/10.1007/BF01007709
  40. Neale, A. D., Wahleithner, J. A. A., Lund, M., Bonnett, H. T., Kelly, A., Meeks-Wagner, R. D., Peacock, W. J. and Dennis, E. S. (1990) Chitinase, B-1,3-glucanase, osmotin and extensin are expressed in tobacco explants during flower formation. Plant Cell 2, 673-684 https://doi.org/10.1105/tpc.2.7.673
  41. Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B. and Mosinger, E. (1995) Pathogenesisrelated PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol. 108, 17-27 https://doi.org/10.1104/pp.108.1.17
  42. Ozturk, Z. N., Talame, V., Deyholos, M., Michalowski, C. B., Galbraith, D. W., Gozukirmizi, N., Tuberosa, R. and Bohnert, H. J. (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol. Biol. 48, 551-573 https://doi.org/10.1023/A:1014875215580
  43. Park, C. J., Shin, R., Park, J. M., Lee, G. J., You, J. S. and Paek, K. H. (2002) Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48, 243-254 https://doi.org/10.1023/A:1013383329361
  44. Parker, J. E., Coleman, M. J., Szabo, V., Frost, L. N., Schmidt, R., van der Biezen, E. A., Moores, T., Dean, C., Daniels, M. J. and Jones, J. D. G. (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and Interleukin-1 receptors with N and L6. Plant Cell 9, 879-894 https://doi.org/10.1105/tpc.9.6.879
  45. Pfaffl, M. W., Horgan, G. W. and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36 https://doi.org/10.1093/nar/30.9.e36
  46. Rozen, S. and Skaletsky H. J. (2000) Primer3 on the WWW for general users and for biologist programmers; in Bioinformatics Methods and Protocols: Methods in Molecular Biology, Krawetz S. and Misener S. (eds.), pp 365-386, Humana Press, Totowa, USA
  47. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  48. Russell, B. W. and Mills, D. (1994) Morphological, physiological, and genetic evidence in support of a conspecific status for Tilletia caries, T. controversa, and T. foetida. Phytopathology 84, 576-582 https://doi.org/10.1094/Phyto-84-576
  49. Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Schulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15, 732-744 https://doi.org/10.1105/tpc.009258
  50. Sohal, A. K., Love, A. J., Cecchini, E., Covey, S. N., Jenkins, G. I. and Milner, J. J. (1999) Cauliflower mosaic virus infection stimulates lipid transfer protein gene expression in Arabidopsis. J. Exp. Bot. 50, 1727-1733 https://doi.org/10.1093/jexbot/50.341.1727
  51. Swinburne, T. R. (1963) Infection of what by Tilletia caries (DC.) TUL., the causal organism of bunt. Trans. Brit. Mycol. Soc. 46, 145-156 https://doi.org/10.1016/S0007-1536(63)80016-9
  52. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 https://doi.org/10.1038/35048692
  53. Thordal-Christensen, H., Brandt, J., Cho, B. H., Rasmussen, S. K., Gregersen, P. L., Smedegaard-Petersen, V. and Collinge, D. B. (1993) cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiol. Mol. Plant Pathol. 40, 395-409 https://doi.org/10.1016/0885-5765(92)90031-P
  54. Tottman, D. R. and Makepeace, R. J. (1979) An explanation of the decimal code for the growth stages of cereals with illustrations. Ann. Appl. Biol. 93, 221-234 https://doi.org/10.1111/j.1744-7348.1979.tb06534.x
  55. Trione, E. J. and Ross, W. D. (1988) Lipids as bioregulators of teliospore germination and sporidial formation in the wheat bunt fungi, Tilletia species. Mycologia 80, 38-45 https://doi.org/10.2307/3807491
  56. Tronsmo, A. M., Gregersen, P., Hjeljord, L., Sandal, T., Bryngelsson, T. and Collinge, D. B. (1993) Cold-induced disease resistance; in Mechanisms of Plant Defence, Fritig, B. and Legrand, M. (eds.), pp. 369, Kluwer Academic Publishers, Dordrecht, The Netherlands
  57. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dicher, S., Chandler, D., Slusarenki, A., Ward, E. and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell 4, 645- 656 https://doi.org/10.1105/tpc.4.6.645
  58. van Loon, L. C. and van Strien, E. A. (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55, 85-97 https://doi.org/10.1006/pmpp.1999.0213
  59. Veronese, P., Ruiz, M. T., Coca, M. A., Hernandez-Lopez, A., Lee, H., Ibeas, J. I., Damsz, B., Pardo, J. M., Hasegawa, P. M., Bressan, R. A. and Narasimhan, M. L. (2003a) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol. 131, 1580-1590 https://doi.org/10.1104/pp.102.013417
  60. Veronese, P., Narasimhan, M. L., Stevenson, R. A., Zhu, J. K., Weller, S. C., Subbarao, K. V. and Bressan, R. A. (2003b) Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J. 35, 574-587 https://doi.org/10.1046/j.1365-313X.2003.01830.x
  61. Vernooij, B., Friedrich, L., Ahl Goy, P., Staub, T., Kessmann, H. and Ryals, J. (1995) 2, 6-dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Mol. Plant-Microbe Interact. 8, 228-234 https://doi.org/10.1094/MPMI-8-0228
  62. von Stein, O. D., Thies, W. G. and Hofmann, M. (1997) A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res. 25, 2598-2602 https://doi.org/10.1093/nar/25.13.2598
  63. Wei, F., Wing, R. A. and Wise, R. P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14, 1903-1917 https://doi.org/10.1105/tpc.002238
  64. White, A. J., Dunn, M. A., Brown, K. and Hughes, M. A. (1994) Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J. Exp. Bot. 45, 1885-1892 https://doi.org/10.1093/jxb/45.12.1885
  65. Woolman, H. M. (1930) Infection phenomena and host reactions caused by Tilletia tritici in susceptible and nonsusceptible varieties of wheat. Phytopathology 20, 637-652
  66. Xiong, L., Lee, M. W., Qi, M. and Yang, Y. (2001) Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol. Plant-Microbe Interact. 14, 685-692 https://doi.org/10.1094/MPMI.2001.14.5.685
  67. Yun, D. J., Bressan, R. A. and Hasegawa, P. M. (1997) Plant antifungal proteins. Plant Breed. Rev. 14, 39-88
  68. Zhou, F., Kurth, J., Wei, F., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13, 337-350 https://doi.org/10.1105/tpc.13.2.337

피인용 문헌

  1. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish) vol.32, pp.9, 2013, https://doi.org/10.1007/s00299-013-1449-7
  2. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum vol.67, pp.3-5, 2005, https://doi.org/10.1016/j.pmpp.2005.12.007
  3. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection vol.39, pp.10, 2012, https://doi.org/10.1007/s11033-012-1823-5
  4. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice vol.225, pp.4, 2007, https://doi.org/10.1007/s00425-006-0397-7
  5. Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization vol.134, 2012, https://doi.org/10.1016/j.scienta.2011.11.022
  6. Partially purified ns-LTPs from plant source promote growth and induce downy mildew disease resistance in pearl millet vol.48, pp.3, 2015, https://doi.org/10.1080/03235408.2014.884829
  7. Compatible and Incompatible Interactions in Wheat Involving theBt-10Gene for Resistance toTilletia tritici, the Common Bunt Pathogen vol.97, pp.11, 2007, https://doi.org/10.1094/PHYTO-97-11-1397
  8. Mapping quantitative trait loci controlling common bunt resistance in a doubled haploid population derived from the spring wheat cross RL4452 × AC Domain vol.21, pp.3, 2008, https://doi.org/10.1007/s11032-007-9131-9
  9. Expressional diversity of wheat nsLTP genes: evidence of subfunctionalization via cis-regulatory divergence vol.138, pp.8, 2010, https://doi.org/10.1007/s10709-010-9467-7
  10. Characterization and Antifungal Properties of Wheat Nonspecific Lipid Transfer Proteins vol.21, pp.3, 2008, https://doi.org/10.1094/MPMI-21-3-0346
  11. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis vol.66, pp.19, 2015, https://doi.org/10.1093/jxb/erv313
  12. Control of Common Bunt in Organic Wheat vol.95, pp.2, 2011, https://doi.org/10.1094/PDIS-09-10-0620
  13. Transcriptional response of Choristoneura fumiferana to sublethal exposure of Cry1Ab protoxin from Bacillus thuringiensis vol.15, pp.4, 2006, https://doi.org/10.1111/j.1365-2583.2006.00659.x
  14. Functional Analysis of a Novel Male Fertility Lipid Transfer Protein Gene in Brassica campestris ssp. chinensis vol.31, pp.4, 2013, https://doi.org/10.1007/s11105-012-0552-1
  15. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum – Rhizoctonia solani Interaction vol.7, 2016, https://doi.org/10.3389/fpls.2016.01109
  16. Inducers of resistance reduce common bunt infection in wheat seedlings while differentially regulating defence-gene expression vol.67, pp.3-5, 2005, https://doi.org/10.1016/j.pmpp.2005.12.001
  17. Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp. chinensis vol.36, pp.2, 2009, https://doi.org/10.1007/s11033-007-9180-5
  18. Germin and Germin-like Proteins: Evolution, Structure, and Function vol.27, pp.5, 2008, https://doi.org/10.1080/07352680802333938
  19. Expression Analysis of Defense-Related Genes in Cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum Infection and Following Chemical Elicitation using a Salicylic Acid Analog and Methyl Jasmonate vol.30, pp.1, 2012, https://doi.org/10.1007/s11105-011-0335-0
  20. Morphological and Molecular Analyses of Host and Nonhost Interactions Involving Barley and Wheat and the Covered Smut PathogenUstilago hordei vol.23, pp.12, 2010, https://doi.org/10.1094/MPMI-11-09-0271
  21. A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates vol.21, pp.2, 2012, https://doi.org/10.1111/j.1365-2583.2011.01127.x
  22. The importance for food security of maintaining rust resistance in wheat vol.5, pp.2, 2013, https://doi.org/10.1007/s12571-013-0248-x