COD Reduction and Process Optimization of Waste Water from the Paper-mill

제지폐수의 COD 저감 및 처리공정 최적화에 관한 연구

  • Shin, Dong Ho (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Lee, Yong Taek (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University)
  • 신동호 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학전공) ;
  • 이용택 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학전공)
  • Received : 2005.06.24
  • Accepted : 2005.08.04
  • Published : 2005.10.10

Abstract

We researched in the optimization of unit process and the stabilization of discharged water quality through the treatment of the occurrence of wastewater classified by place of production which has high COD load and non degradable COD load in paper industry. As the result, using polymer, inorganic flocculants and alum at the same time is effective to advance the COD value through the colloid material removal with SS in the first treatment process. Moreover, it is determined to keep optimum of $FeCl_2/H_2O_2$ in the concentration of 1000 ppm in the ratio of 1/1. Because It is confirmed that to input excess chemicals using Fenton oxidation method gives adverse effect to water quality.

제지산업에서 COD 부하 및 난분해성 COD 부하가 높은 생산지종별 발생폐수의 처리방안을 통하여 단위공정의 최적화와 방류수의 수질 안정화에 대해 연구하였다. 그 결과 1차 처리 공정에서는 SS와 더불어 colloid성 물질제거를 통한 COD 제거효율을 향상시키기 위해서 음이온 응집제 및 Alum의 병행사용이 효과적인 것으로 분석되었다. 또한 Fenton 산화법의 병행사용으로 인한 약품의 과량투입은 수질상태에 악영향을 주는 것으로 확인되었기 때문에 최적량인 $FeCl_2$$H_2O_2$의 비가 1:1인 농도비 1000 ppm 일 때 COD 제거율이 가장 높다고 판단된다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. A. Luoni, J. Junna, and L. Nevalainen, Wat. Sci. Tec., 20, 25 (1988)
  2. B. H. Lee, H. J. Kim, and H. J. Park, J. Ind Eng. Chem., 8, 50 (2002)
  3. H. W. Pearson, D. D. Mara, S. W. Mills, and D. J. Smallman, 20th ed. APHA-AWWA-WPCF (1998)
  4. A. E. Greenberg, J. S. Clesceri, and A. D. Eaton, 17th ed. Amer. Public Health Assoc. Washington, DC: APHA (1992)
  5. J. Yoon, Y. Lee, and S. Kim, Wat. Sci. Technol., 44, 15 (2001)
  6. S. Verenich, A. Laari, and J. Kallas, Waste Management, 20, 287 (2000) https://doi.org/10.1016/S0956-053X(99)00308-6
  7. E. Neyens and J. Baeyens, Journal of Hazardous Materials, B98, 33 (2003)
  8. D. H. Eikelboom, van Buisen MSS. Delft: THO Research Institute, (1983)
  9. N. Azema, M.-F. Pouet, C. Berho, and O. Thomas, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 204, 131 (2002) https://doi.org/10.1016/S0927-7757(02)00006-7
  10. H. Ganjidoust, K. Tatsumi, T. Yamagishi, and R. N. Gholian, Water Science and Technology, 35, 291 (1997) https://doi.org/10.1016/S0273-1223(96)00943-2
  11. P. Bajpai and P. K. Bajpai, Journal of Biotechnology, 33, (1994)
  12. E. Neyens, J. Baeyens, M. Weemaes, and B. De heyder, Journal of Hazardous Materials, B98, 91 (2003)
  13. C. R. O'Melia, M. W. Hahn, and C. T. Chen, Water Science and Technology 36, 119 (1997)
  14. S. Ahsan, S. Kaneco, K. Ohta, J. Mizuno, and K. Kani, Wat. Res., 35, 3738 (2001) https://doi.org/10.1016/S0043-1354(01)00047-1