Attenuation of Extracellular Acidic pH-induced Cyclooxygenase-2 Expression by Nitric Oxide

  • Cha, Seok Ho (Department of Pharmacology and Toxicology, College of Medicine, Inha University) ;
  • Park, Ji Eun (Department of Biology, Catholic University of Daegu) ;
  • Kwak, Jin-Oh (Department of Pharmacology and Toxicology, College of Medicine, Inha University) ;
  • Kim, Hyun-Woo (Department of Pharmacology and Toxicology, College of Medicine, Inha University) ;
  • Kim, Jong Bong (Department of Biology, Catholic University of Daegu) ;
  • Lee, Kwang Youn (Department of Pharmacology, College of Medicine, Yeungnam University) ;
  • Cha, Young-Nam (Department of Pharmacology and Toxicology, College of Medicine, Inha University)
  • Received : 2004.11.05
  • Accepted : 2004.12.28
  • Published : 2005.04.30

Abstract

Corneal endothelial cells play an important role in maintaining the transparency and ionic balance of the cornea. Inflammation causes many changes in the intracellular and extracellular environment of the cornea, including acidosis. We examined the relationship between changes in extracellular pH and expression of cyclooxygenase-2 in cultured bovine corneal endothelial cells. When extracellular pH ($[pH]_o$) was reduced to pH 6.4, COX-2 mRNA increased, with a peak at 2 h. This was blocked by pretreatment with actinomycin D and incubation with spermine NONOate (SPER/NO, a nitric oxide donor). Exposure to the $H^+$ ionophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), also raised COX-2 mRNA levels. CCCP-induced COX-2 mRNA expression was also reduced by SPER/NO. These results were confirmed immuno-cytochemically. These data demonstrate that COX-2 expression is stimulated by the lowering of extracellular pH that could result from bacterial infection, and that this is countered by over-production of nitric oxide, which could also result from bacterial infection.

Keywords

Acknowledgement

Supported by : Inha University

References

  1. Ajmone-Cat, M. A., Nicolini, A., and Minghetti, L. (2001) Differential effects of the nonsteroidal antiinflammatory drug flurbiprofen and its nitric oxide-releasing derivative, nitroflurbiprofen, on prostaglandin E2, $interleukin-1{\beta}$, and nitric oxide synthesis by activated microglia. J. Neurosci. Res. 66, 715-722 https://doi.org/10.1002/jnr.10038
  2. Cha, S. H., Kim, H. P., Jung, N. H., Lee, W. K., Kim, J. Y., et al. (2002) Down-regulation of organic anion transporter 2 mRNA expression by nitric oxide in primary cultured rat hepatocytes. IUBMB Life 54, 129-135 https://doi.org/10.1080/15216540214534
  3. Cha, S. H., Jung, N. H., Kim, B. R., Kim, H. W., and Kwak, J. O. (2004) Evidence for cyclooxygenase-1 association with caveolin-1 and -2 in cultured human embryonic kidney (HEK 293) cells. IUBMB Life 56, 221-227 https://doi.org/10.1080/15216540410001699312
  4. Cohen, E., Laibson, P., Arentsen, J., and Clemons, C. (1987) Corneal ulcers associated with cosmetic extended wear soft contact lenses. Ophthalmology 94,109-114
  5. D'Acquisto, F., Maiuri, M. C., Cristofaro, F., and Carnuccio, R. (2001) Nitric oxide prevents inducible cyclooxygenase expression by inhibiting nuclear $factor-{\kappa}B$ and nuclear factorinterleukin- 6 activation. Naunyn. Schmiedebergs. Arch. Pharmacol. 364, 157-165 https://doi.org/10.1007/s002100100435
  6. Dighiero, P., Behar-Cohen, F., Courtois, Y., and Goureau, O. (1997) Expression of inducible nitric oxide synthase in bovine corneal endothelial cells and keratocytes in vitro after lipopolysaccharide and cytokines stimulation. Invest. Ophthalmol. Vis. Sci. 38, 2045-2052
  7. Fukuto, J. M., Cho, J. Y., and Switzer, C. H. (2000) The chemical properties of nitric oxide and related nitrogen oxide; in Nitric Oxide: Biology and Pathology, Ignarro, L. J. (ed.), pp. 23-40, Academic Press, New York
  8. Gerritsen, M. E., Rimarachin, J., Perry, C. A., and Weinstein, B. I. (1989) Arachidonic acid metabolism by cultured bovine corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 30, 698-705
  9. Hershman, H. R. (1996) Prostaglandin synthase 2. Biochem. Biophys. Acta 1299, 125-140 https://doi.org/10.1016/0005-2760(95)00194-8
  10. Kim, J. C., Park, G. S., Kim, J. K., and Kim, Y. M. (2002) The role of nitric oxide in ocular surface cells. J. Korean Med. Sci. 17, 389-394
  11. Kurpakus-Wheater, M., Kernacki, K. A., and Hazlett, L. D. (2001) Maintaining corneal integrity how th 'window' stays clear. Prog. Histochem. Cytochem. 36, 185-259
  12. Marnett, L. J., Rowlinson, S. W., Goodwin, D. C., Kalgutkar, A. S., and Lanzo, C. A. (1999) Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J. Biol. Chem. 274, 22903-22906 https://doi.org/10.1074/jbc.274.33.22903
  13. Maurice, D. M. (1972) The location of the fluid pump in the cornea. J. Physiol. 221, 43-54
  14. Maurice, D. M. and Giardini, A. A. (1951) Swelling of the cornea in vivo after the destruction of its limiting layers. Br. J. Ophthalmol. 35, 791-797 https://doi.org/10.1136/bjo.35.12.791
  15. Narumiya, S. and FitzGerald, G. A. (2001) Genetic and pharmacological analysis of prostanoid receptor function. J. Clin. Invest. 108, 25-30
  16. Nathan, C. and Xie, Q. W. (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918 https://doi.org/10.1016/0092-8674(94)90266-6
  17. Ogawa, G. and Hyndiuk, R. (1994) Bacterial keratitis and conjunctivitis; in The Cornea, Smolin, G. and Thoft, R. (eds.), pp. 125-167, Little, Brown Boston
  18. Okada, K., Tsai, P., Briner, V. A., Caramelo, C., and Schrier, R. W. (1991) Effects of extra- and intracellular pH on vascular action of arginine vasopressin. Am. J. Physiol. 260, F39-F45
  19. O'Neill, G. P. and Ford-Hutchinson, A. W. (1993) Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330, 156-160
  20. Park, M. K., Hwang, S. Y., Kim, J. O., Kwack, M. H., Kim, J. C., et al. (2004) NS398 inhibits the growth of Hep3B hepatocellulalr carcinoma cells via caspase-independent apoptosis. Mol. Cells 17, 45-50
  21. Reiss, C. S. and Komatsu, T. (1998) Does nitric oxide play occur a critical role in viral infections? J. Virol. 72, 4547-4551
  22. Rodeberg, D. A., Chaet, M. S., Bass, R. C., Arkovitz, M. S., and Garcia, V. F. (1995) Nitric oxide: an overview. Am. J. Surg. 170, 292-303 https://doi.org/10.1016/S0002-9610(05)80017-0
  23. Schein, O. D., Glynn, R. J., Poggio, E. C., Seddon, J. M., and Kenyon, K. R. (1989) The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lens. A case-control study. N. Engl. J. Med. 321, 773-778 https://doi.org/10.1056/NEJM198909213211201
  24. Smith, W. L., Garavito, R. M., and DeWitt, D. L. (1996) Prostagladin endoperoxide H synthases (cyclooxygenase)-1 and - 2. J. Biol. Chem. 271, 33157-33160 https://doi.org/10.1074/jbc.271.52.33157
  25. Stapleton, F., Dart, J. K., Seal, D. V., and Matheson, M. (1995) Epidemiology of Pseudomonas aeruginosa keratitis in contact lens wearers. Epidemiol. Infect. 114, 395-402 https://doi.org/10.1017/S0950268800052109
  26. Steen, K. H., Steen, A. E., Kreysel, H. W., and Reeh, P. W. (1996) Inflammatory mediators potentiate pain induced by experimental tissue acidosis. Pain 66, 163-170 https://doi.org/10.1016/0304-3959(96)03034-5
  27. Sun, X. C., Bonanno, J. A., Jelamskii, S., and Xie, Q. (2000) Expression and localization of $Na^+-HCO_3^ -$ cotransporter in bovine corneal endothelium. Am. J. Physiol. 279, C1648- C1655
  28. Williams, C. S. and DuBois, R. N. (1996) Prostaglandin endoperoxide synthase: why two isoforms? Am. J. Physiol. 270, G393-G400
  29. Wu, K. K. (1996) Cyclooxygenase 2 induction: molecular mechanism and pathophysiologic roles. J. Lab. Clin. Med. 128, 242-245 https://doi.org/10.1016/S0022-2143(96)90023-2
  30. Yang, S. W., Lee, W. K., Lee, E. J., Kim, K. Y., Lim, Y., et al. (2001) Effect of bradykinin on cultured bovine corneal endothelial cells. Ophthalmologica 215, 303-308 https://doi.org/10.1159/000050879