한국인의 신생아 황달과 UGT1A1 및 CYP1A2 유전자 다형성과의 연관성

The Association of Neonatal Hyperbilirubinemia with UGT1A1 and CYP1A2 Gene Polymorphism in Korean Neonates

  • 강훈 (성애병원 소아과) ;
  • 임준호 (성애병원 소아과) ;
  • 김지숙 (성애병원 소아과) ;
  • 김은령 (성애병원 소아과) ;
  • 김성도 (경희대학교 의과대학 소아과학교실) ;
  • 이희제 (경희대학교 의과대학 약리학교실) ;
  • 정주호 (경희대학교 의과대학 약리학교실)
  • Kang, Hoon (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Lim, Jun Ho (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Kim, Ji Sook (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Kim, Eun Ryoung (Department of Pediatrics, Sung-Ae General Hospital) ;
  • Kim, Sung Do (Department of Pediatrics, College of Medicine, Kyunghee University) ;
  • Lee, Hee Jae (Department of Pharmacology, College of Medicine, Kyunghee University) ;
  • Chung, Joo Ho (Department of Pharmacology, College of Medicine, Kyunghee University)
  • 투고 : 2004.09.01
  • 심사 : 2004.10.13
  • 발행 : 2005.04.15

초록

목 적 : 신생아 황달은 백인에 비해 중국, 일본, 한국 등 동아시아인에서 2배 이상 많이 발생하는 것으로 보아 유전적 연관성이 있을 것으로 생각되어 왔고, 최근 일본인, 타이완 중국인, 한국인에서 UGT1A1 유전자의 Gly71Arg 다형성이 신생아 황달과 연관성이 있다고 보고되었다. 선천적으로 UDP-glucuronosyltransferase(UDPGT)에 결함이 있는 경우에는 부경로(alternative pathway)로 CYP1A2 효소를 자극하여 빌리루빈 대사가 이루어진다. 출생 후 6-14주가 되어야 성인 UDPGT 정상치에 도달하기 때문에 신생아 황달에서 빌리루빈 대사에 CYP1A2 부경로가 중요한 역할을 할 것으로 생각된다. 이에 저자들은 UGT1A1과 CYP1A2 유전자의 다형성이 한국인 신생아 황달의 발생과 어떤 연관성이 있는지 알아보고자 본 연구를 시행하였다. 방 법 : 혈중 빌리루빈 수치가 12 mg/dL 이상의 건강하고, 황달의 다른 위험인자가 없는 만삭아 79명과 대조군 68명으로부터 혈액 0.5 cc를 채취하여 DNA을 분리하였다. UGT1A1 유전자는 Polymerase chain reaction(PCR) 후에 염기서열 분석을 통해서 Gly71Arg 유전자 다형성을 확인하였으며, CYP1A2는 제한효소인 MboII를 이용하여 PCR-restriction fragment length polymorphism 방법과 염기서열 분석을 통해서 T2698G 유전자 다형성을 확인하였다. 결 과 : UGT1A1 유전자의 Gly71Arg 다형성은 변이형 대립 유전자 분포가 환자군에서 32%로 대조군 11%보다 높았다(P<0.0001). CYP1A2 유전자의 다형성은 변이형 유전형 분포가 환자군에서는 41.8%, 대조군에서 32.3%로 환자군이 높았으며 통계학적으로 유의하였다(P=0.015). 변이형 대립유전자의 빈도는 환자군에서 21%로 대조군 19%보다 높았으나 통계학적 유의성은 없었다(P=0.706). Gly71Arg와 T2698G의 변이형 발생의 연관성은 없었다(P=0.635). 결 론 : 한국인의 신생아 황달에서 체내의 빌리루빈 대사의 주경로와 부경로에 작용하는 효소의 유전자인 UGT1A1과 CYP1A2의 다형성이 확인되었고, UGT1A1 유전자의 Gly71Arg 다형성은 신생아 황달과 연관이 있었으나 CYP1A2 유전자의 T2698G 다형성은 신생아의 황달과 연관이 없었다.

Purpose : The incidence of nonphysiologic neonatal hyperbilirubinemia is twice as high in East Asians as in whites. Recently, UGT1A1 mutation was found to be a risk factor for neonatal hyperbilirubinemia. In congenitally-jaundiced Gunn rats, which lack expression of UDP-glucuronosyltransferase, alternative pathways can be stimulated by inducers of CYP1A1 and CYP1A2 enzymes. CYP1A2 plays a major role in bilirubin degradation of the alternate pathway. We studied the relationship between UGT1A1 and CYP1A2 gene polymorphism of neonatal hyperbilirubinemia in Koreans. Methods : Seventy-nine Korean full term neonates who had hyperbilirubinemia(serum bilirubin >12 mg/dL) without obvious causes of jaundice, were analyzed for UGT1A1 and CYP1A2 gene polymorphism; the control group was sixty-eight. We detected the polymorphism of Gly71Arg of UGT1A1 gene by direct sequencing and T2698G of CYP1A2 by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) using MboII and direct sequencing. Results : Allele frequency of Gly71Arg mutation in the hyperbilirubinemia group was 32 percent, which was significantly higher than 11 percent in the control group(P<0.0001). Mutant gene frequency of T2698G was 41.8 percent in patients and 32.3 percent in the control group(P=0.015), but allele frequency was 21 percent in patients and 19 percent in the control group, which was not significantly higher(P=0.706). There was no relationship between mutations of two genes(P=0.635). Conclusion : The polymorphism of UGT1A1 gene(Gly71Arg) and CYP1A2 gene(T2698G) was detected in Korean neonatal hyperbilirubinemia. Only polymorphisms of Gly71Arg in UGT1A1 were significantly higher than control group.

키워드

참고문헌

  1. Maisels MJ. Jaundice. In : Avery GB, Fletcher MA, Mac-Donald MG, editors. Neonatology : pathophysiology and management of the newborn. 5th ed. Philadelphia : JB Lippincott Co, 1999:765-819
  2. Friedman L, Lewis PJ, Clifton P, Bulpitt CJ. Factors influencing the incidence of neonatal jaundice. Br Med J 1978; 1:1235-7 https://doi.org/10.1136/bmj.1.6122.1235
  3. Horiguchi T, Bauer C. Ethnic differences in neonatal jaundice : Comparison of Japanese and Caucasian newborn infants. Am J Obstet Gynecol 1975;121:71-4
  4. Linn S, Schoenbaum SC, Monson RR, Rosner B, Stubblefield PG, Ryan KJ. Epidemiology of neonatal hyperbilirubinemia. Pediatrics 1985;75:770-4
  5. Brown WR, Boon WH. Ethic group differences in plasma bilirubin levels of full-term, healthy Singapore newborns. Pediatrics 1965;36:745-51
  6. Khoury MJ, Calle EE, Joesoef RM. Recurrence risk of neonatal hyperbilirubinemia in siblings. Am J Dis Child 1988; 142:1065-9
  7. Newman TB, Easterlin MJ, Goldman ES, Stevenson DK. Laboratory evaluation of jaundice in newborns. Am J Dis Child 1990;144:364-8
  8. Gale R, Seidman DS, Dollberg S, Stervenson DK. Epidemiology of neonatal jaundice in the Jerusalem population. J Pediatr Gastroenterol Nutr 1990;10:82-6 https://doi.org/10.1097/00005176-199001000-00016
  9. Nielsen HE, Haase P, Blaabjerg J, Stryhn H, Hilden J. Risk factors and sib correlation in physiological neonatal jaundice. Acta Paediatr Scand 1987;76:504-11 https://doi.org/10.1111/j.1651-2227.1987.tb10507.x
  10. Drew JH, Kitchen WH. Jaundice in infants of greek parentage : the unknown factor may be environmental. J Pediatr 1976;89:248-52 https://doi.org/10.1016/S0022-3476(76)80457-X
  11. Koiwai O, Nishizawa M, Hasada K, Aono S, Adachi Y, Mamiya N, et al. Gilbert's syndrome is caused by a heterozygous missense mutation in the gene for bilirubin UDPglucuronosyltransferase. Hum Mol Genet 1995;4:1183-6 https://doi.org/10.1093/hmg/4.7.1183
  12. Yamamoto K, Sato H, Fujiyama Y, Doida Y, Bamba T. Contribution of two missense mutations(G71R and Y486D) of the bilirubin UDP glycosyltransferase(UGT1A1) gene to phenotypes of Gilbert's syndrome and Crigler-Najjar syndrome syndrome type II. Biochim Biophys Acta 1998;1406:267-73 https://doi.org/10.1016/S0925-4439(98)00013-1
  13. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase(UGT1A1) causing Crigler-Najjar and Gilbert syndromes : correlation of genotype to phenotype. Hum Mutat 2000;16:297-306 https://doi.org/10.1002/1098-1004(200010)16:4<297::AID-HUMU2>3.0.CO;2-Z
  14. Hong KW, Kang H, Kim IS, Kim JS, Kim ER, Lee HJ, et al. Polymorphism of UDP-glucuronosyltransferase gene (UGT1A1) of neonatal hyperbilirubinemia in Korea. Korean J Pediatr 2004;47:18-23
  15. Maruo Y, Nishizawa K, Sato H, Doida Y, Shimada M. Association of neonatal hyperbilirubinemia with bilirubin UDP-glucuronosyltransferase polymorphism. Pediatrics 1999;103:1224-7 https://doi.org/10.1542/peds.103.6.1224
  16. Huang CS, Chang PF, Huang MA, Chen ES, Hung KL, Tsou KI. Relationship between bilirubin UDP-glucuronosyltransferase 1A1 gene and neonatal hyperbilirubinemia. Pediatr Res 2002;52:601-5 https://doi.org/10.1203/00006450-200210000-00022
  17. Yamamoto A, Nishio H, Waku S, Yokoyama N, Yonetani M, Uetani Y, et al. Gly71Arg mutation of the bilirubin UDP-glucuronosyltransferase 1A1 gene is associated with neonatal hyperbilirubinemia in the japanese population. Kobe J Med Sci 2002;48:73-7
  18. Akaba K, Kimura T, Sasaki A, Tanabe S, Wakabayashi T, Hiroi M, et al. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese. J Hum Genet 1999;44:22-5 https://doi.org/10.1007/s100380050100
  19. Akaba K, Kimura T, Sasaki A, Tanabe S, Ikegami T, Hashimoto M, et al. Neonatal hyperbilirubinemia and mutation of bilirubin uridine-diphosphate-glucuronosyltransferase gene : A common missense mutation among Japanese, Koreans and Chinese. Biochem Molec Biol Int 1998;46:21-6
  20. Schmid R, Hammaker L. Metabolism and disposition of C14-bilirubin in congenital nonhemolytic jaundice. J Clin Invest 1963;42:1720-34 https://doi.org/10.1172/JCI104858
  21. Kapitulnik J, Ostrow JD. Stimulation of bilirubin catabolism in jaundiced Gunn rats by an inducer of microsomal mixed-function mono-oxygenases. Proc Natl Acad Sci USA 1977;75:682-5 https://doi.org/10.1073/pnas.75.2.682
  22. Zaccaro C, Sweitzer S, Pipino S, Gorman N, Sinclair PR, Sinclair JF, et al. Role of cytochrome P4501A2 in bilirubin degradation studies in Cyp1a2(-/-) mutant mice. Biochem Pharmacol 2001;61:843-9 https://doi.org/10.1016/S0006-2952(01)00568-8
  23. Ritter JK, Crawford JM, Owens IS. Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J Biol Chem 1991;266:1043-7
  24. Monaghan G, Ryan M, Seadon R, Hume R, Burchell B. Genetic variation in bilirubin UDP-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet 1996;347: 578-81 https://doi.org/10.1016/S0140-6736(96)91273-8
  25. Ando Y, Chida M, Nakayama K, Saka H, Kamataki T. The UGT1A1*28 allele is relatively rare in a Japanese population. Pharmacogenetics 1998;8:357-60 https://doi.org/10.1097/00008571-199808000-00010
  26. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyl transferase 1(UGT1A1) promoter : A balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl Acad Sci USA 1998;95:8170-4 https://doi.org/10.1073/pnas.95.14.8170
  27. Huang CS, Chang PF, Huang MJ, Chen ES, Chen WC. Glucose-6-phosphate dehydrogenase deficiency, the UDP-glucuronosyltransferase 1A1 gene, and neonatal hyperbilirubinemia. Gastroenterology 2002;123:127-33 https://doi.org/10.1053/gast.2002.34173
  28. Huang CS, Luo GA, Huang MJ, Yu SC, Yang SS. Variations of the bilirubin uridine-diphosphoglucuronosyl transferase 1A1 gene in healthy Taiwanese. Pharmacogenetics 2000;10:539-44 https://doi.org/10.1097/00008571-200008000-00007
  29. Kapitulnik J, Gonzalez FJ. Marked endogenous activation of the CYP1A1 and CYP1A2 genes in congenitally jaundiced Gunn rat. Mol Pharmacol 1993;43:722-5
  30. Pons N, Pipino S, De Matteis F. Interaction of polyhalogenated compounds of appropriate configuration with mammalian or bacterial CYP enzymes. Increased bilirubin and uroporphyrinogen oxidation in vitro. Biochem Pharmacol 2003; 66:405-14 https://doi.org/10.1016/S0006-2952(03)00284-3
  31. Jaiswal AK, Nebert DW, Gonzalez FJ. Human P3450 : cDNA and complete amino acid sequence. Nucleic Acids Res 1986;14:6773-4 https://doi.org/10.1093/nar/14.16.6773
  32. Quattrochi LC, Pendurthi UR, Okino ST, Potenza C, Tukey RH. Human cytochrome P-450 4 mRNA and gene : Part of a multigene family that contains Alu sequences in its mRNA. Proc Natl Acad Sci USA 1986;83:6731-5 https://doi.org/10.1073/pnas.83.18.6731
  33. Ikeya K. Jaiswal AK, Owens RA, Jones JE, Nebert DW, Kimura S. Structure, comparison with the mouse and rat orthologous gene and differences in liver 1A2 mRNA expression. Mol Endocrinol 1989;3:1399-408 https://doi.org/10.1210/mend-3-9-1399
  34. Quattrochi LC, Tukey RH. The human cytochrome CYP1A2 gene contains regulatory elements responsive to 3-Methylchlolanthrene. Mol Pharmacol 1989;36:66-71
  35. Chung I, Bresnick E. Identification of positive and negative regulatory elements of the human cytochrome P4501A2 (CYP1A2) gene. Arch Biochem Biophys 1997;338:220-6 https://doi.org/10.1006/abbi.1996.9815
  36. Nakajima M, Yokoi T, Mizutani M, Shin S, Kadlubar FF, Kamataki T. Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites : Absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol Biomarkers Prev 1994;3:413-21
  37. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T. Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene : Effect on the CYP1A2 inducibility in humans. J Biochem 1999;125:803-8 https://doi.org/10.1093/oxfordjournals.jbchem.a022352
  38. Huang JD, Guo WC, Lai MD, Guo YL, Lambert GH. Detection of a novel cytochrome P-450 1A2 polymorphism (F21L) in Chinese. Drug Metab Dispos 1999;27:98-101