pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels

글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동

  • Kim, Bumsang (Department of Chemical Engineering, Hongik University)
  • Received : 2004.11.11
  • Accepted : 2004.12.28
  • Published : 2005.04.30

Abstract

There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation $M_t/M_{\infty}=kt^n$ was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the $pK_a$ of the gels. Experimental results of time-dependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.

음이온 하이드로젤은 그들이 가지고 있는 pH 감응성 팽윤거동 때문에 단백질 약물의 경구투여용 전달물질로써 많은 주목을 받고 있다. 본 연구에서는 음이온 하이드로젤의 pH 변화에 따른 용매의 침투 메커니즘을 규명하기 위하여 methacrylic acid와 2-methacryloxyehtyl glucoside를 공중합하여 P(MAA-co-MEG) 하이드로젤을 합성한 후 pH 변화에 따른 하이드로젤의 동적 팽윤거동을 관찰하였다. 용매의 침투 메커니즘이 Fickian 또는 non-Fickian 인지를 설명할 수 있는 특성지수 n을 $M_t/M_{\infty}=kt^n$ 관계식으로부터 계산하였다. 하이드로젤에 대한 용매의 침투 메커니즘은 주위 pH의 영향을 많이 받았으며, 젤의 $pK_a$ 보다 높은 pH인 7.0에서는 침투 메커니즘이 상대적으로 고분자사슬의 이완에 의한 지배를 많이 받는다는 것을 알 수 있었다. 한편, pH 7.0에서 고분자 이완에 의한 용매의 침투 메커니즘은 하이드로젤에 존재하는 카르복실산의 이온화에 기인한 것임을 ATR-FTIR 분광분석을 이용하여 확인하였다.

Keywords

Acknowledgement

Supported by : 홍익대학교

References

  1. Korsmeyer, R. W., Lustig, S. R. and Peppas, N. A., 'Solute and Penetrant Diffusion in Swellable Polymers. I. Mathematical Modeling,' J. Polym. Sci., Polym. Phys., 24, 395-408(1986) https://doi.org/10.1002/polb.1986.090240214
  2. Peppas, N. A. and Franson, N. M., 'The Swelling Interface Number as a Criterion for Prediction of Diffusional Solute Release Mechanisms in Swellable Polymers,' J. Polym. Sci., Polym. Phys., 21, 983-997(1983) https://doi.org/10.1002/pol.1983.180210614
  3. Brazel, C. S. and Peppas, N. A., 'Mechanisms of Solute and Drug Transport in Relaxing, Swellable, Hydrophilic Glassy Polymers,' Polymer, 40(12), 3383-3398(1999) https://doi.org/10.1016/S0032-3861(98)00546-1
  4. Lowman, A. M. and Peppas, N. A., in Mathiowitz, E.(Ed.), Encyclopedia of Controlled Drug Delivery, Vol. 1, Wiley, New York, 397-418(1999)
  5. Siepmann, J., Kranz, H., Peppas, N. A. and Bodmeier, R., 'Calculation of the Required Size and Shape of HPMC Matrices to Achieve Desired Drug Release Profiles,' Intern. J. Pharm., 201(2), 151-164(2000) https://doi.org/10.1016/S0378-5173(00)00390-2
  6. Brazel, C. S. and Peppas, N. A., 'Dimensionless Analysis of Swelling of Hydrophilic Glassy Polymers with Subsequent Drug Release from Relaxing Structures,' Biomaterials, 20(8), 721-732(1999)
  7. Torres-Lugo, M. and Peppas, N. A., 'Transmucosal Delivery Systems for Calcitonin: A Review,' Biomaterials, 21(12), 1191-1196 (2000)
  8. Peppas, N. A. and Colombo, P., 'Analysis of Drug Release Behavior from Swellable Polymer Carriers using the Dimensionality Index,' J. Controlled Release, 45(1), 35-40(1997) https://doi.org/10.1016/S0168-3659(96)01542-8
  9. Narasimhan, B., Peppas, N. A. in Park, K. (Ed.), Controlled Drug Delivery: Challenges and Strategies, American Chemical Society, Washington DC, 529-557(1997)
  10. Brazel, C. S. and Peppas, N. A., 'Modeling of Drug Release from Swellable Polymers,' Eur. J. Pharm. Biopharm. 49(1), 47-58 (2000) https://doi.org/10.1016/S0939-6411(99)00058-2
  11. Enscore, D. J., Hopfenberg, H. B. and Stannett, V. T., 'Effect of Particle Size on the Mechanism Controlling n-Hexane Sorption in Glassy Polystyrene Microspheres,' Polymer, 18(8), 793-800(1977) https://doi.org/10.1016/0032-3861(77)90183-5
  12. Hariharan, D. and Peppas, N. A., 'Modelling of Water Transport in Ionic Hydrophilic Polymers,' J. Polym. Sci, Polym. Phys., 32, 1093-1103(1994) https://doi.org/10.1002/polb.1994.090320614
  13. Morishita, M., Lowman, A. M., Takayama, K., Nagai, T. and Peppas, N. A., 'Elucidation of the Mechanism of Incorporation of Insulin in Controlled Release Systems Based on Complexation Polymers,' J. Controlled Release, 81(1-2), 25-32(2002) https://doi.org/10.1016/S0168-3659(02)00043-3
  14. Peppas, N. A., Keys, K. B., Torres-Lugo, M. and Lowman, A. M., 'Poly(ethylene glycol)-containing Hydrogels in Drug Delivery,' J. Controlled Release, 62(1-2), 81-87(1999) https://doi.org/10.1016/S0168-3659(99)00049-8
  15. Torres-Lugo, M. and Peppas, N. A., 'Molecular Design and in vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin,' Macromolecules, 32(20), 6646-6651(1999) https://doi.org/10.1021/ma990541c
  16. Lowman, A. M., Morishita, M., Kajita, M., Nagai, T. and Peppas, N. A., 'Oral Delivery of Insulin using pH-Responsive Complexation Gels,' J. Pharm. Sci. 88(9), 933-937(1999) https://doi.org/10.1021/js980337n
  17. Lowman, A. M. and Peppas, N. A., 'Solute Transport Analysis in pH-Responsive, Complexing Hydrogels of Poly(Methacrylic Acid-g-Ethylene Glycol),' J. Biomat. Sci., Polym. Ed., 10(9), 999- 1009 (1999) https://doi.org/10.1163/156856299X00586
  18. Peppas, N. A., Kim, B. S., Donini, C., Sipahigil, O. and Leobandung, W., in Barratt, G., Duchene, D., Fattal, F. and Legendre, J. Y. (Eds.), New Trends in Polymers for Oral and Parenteral Administration: From Design to Receptors, Editions de Sante, Paris, 32-41 (2001)
  19. Brannon-Peppas, L. and Peppas, N. A., 'Dynamic and Equilibrium Swelling Behavior of pH-Sensitive Hydrogels Containing 2-Hydroxyethyl Methacrylate,' Biomaterials, 11(9), 635-644(1990)
  20. Brannon-Peppas, L. and Peppas, N. A., 'Solute and Penetrant Diffusion in Swellable Polymers. IX. The Mechanisms of Drug Release from pH-Sensitive Swelling-Controlled Systems,' J. Controlled Release, 8(3), 267-274(1989)
  21. Castillo, E. J., Koenig, J. L., Anderson, J. M., Kliment, C. K. and Lo, J., 'Surface Analysis of Biomedical Polymers by Attenuated Total Reflectance-Fourier Transform Infra-red,' Biomaterials, 5(4), 186-193(1984)
  22. Kim, B. and Peppas, N. A., 'Synthesis and Characterization of pH-Sensitive Glycopolymers for Oral Drug Delivery Systems,' J. Biomat. Sci., Polym. Ed., 13(11), 1271-1281(2002) https://doi.org/10.1163/156856202320893000
  23. Ritger, P. L. and Peppas, N. A., 'A Simple Equation for Description of Solute Release. II. Fickian and Anomalous Release from Swellable Devices,' J. Controlled Release, 5(1), 37-42(1987) https://doi.org/10.1016/0168-3659(87)90035-6
  24. Berens, A. R., Hopfenberg, H. B., 'Diffusion and Relaxation in Glassy Polymer Powders: 2. Separation of Diffusion and Relaxation Parameters,' Polymer, 19(5), 489-496(1978) https://doi.org/10.1016/0032-3861(78)90269-0