The Prediction of Vapor-Liquid Equilibrium Data for Methanol/3-methyl-1-butanol System at Constant Temperature

정온하에서 Methanol/3-methy-1-butanol계에 대한 기-액 평형치의 추산

  • Kim, Jong-Shik (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Joon-Man (Department of Chemical Engineering, Keimyung University)
  • 김종식 (계명대학교 화학공학과) ;
  • 이준만 (계명대학교 화학공학과)
  • Received : 2005.02.14
  • Accepted : 2005.10.10
  • Published : 2005.12.10

Abstract

For the binary system of methanol/3-methyl-1-butanol mixture vapor-liquid equilibrium data were measured isothermally at 50, 55, 60, 65, and $70^{\circ}C$. An empirical relation to predict vapor-liquid equilibrium data was obtained from the above measured data. The predicted values compared with the measured ones were in a good agreement, within accuracy ${\pm}0.0007$. The excess molar volume, measured for the binary system of methanol/3-methyl-1-butanol mixture, was positive $V^Eover$ the entire composition range. The maximum values were shown to be about $0.096cm^3/mol$ at x= 0.683.

이성분 methanol/3-methyl-1-butanol계에 대하여 정온하 즉 50, 55 60, 65 및 $70^{\circ}C$에서의 기-액평형치를 측정하고, 그 측정치를 이용하여 기-액평형치를 추산하는 추산식을 이끌어 내었다. 측정치와 추산치를 비교 검토한 결과 기상조성의 몰분율은 ${\pm}0.0007$의 오차범위 내에서 잘 일치하고, methanol/3-methyl-1-butanol계에 대한 과잉 몰부피를 측정한 결과 전체 조성범위에서 양의 편차를 나타내며 최대치는 x= 0.683에서 $0.096cm^3/mol$로 나타났다.

Keywords

References

  1. S. M. Moon, Chemical Product Dictionary, Hangook sajeon yeongusa, 1038 (1993)
  2. M. Margules, stgber. Akad. Wiss. Wien, Math. Naturwiss. Klasse (ll), 104, 1234 (1895)
  3. J. J. van Laar, Z. Phys. Chem., 72, 723 (1910)
  4. G. M. Wilson, J. Am. Chem. Soc., 86, 127 (1964) https://doi.org/10.1021/ja01056a002
  5. H. Renon and Z. M. Prausnitz, AICHE J., 14, 135 (1968) https://doi.org/10.1002/aic.690140124
  6. D. S. Abrams and J. M. Prausnitz, AiCHE J., 21, 116 (1975)
  7. K. Kojima and K. Tochigi, Prediction of vapor-liquid equilibria by the ASOG method, Kodansha-Elsevier (1979)
  8. A. Fredenslund, J. Gembling, and P. Rasmussen, Vapor-liquid equilibria using UNIF AC, Elsevier (1977)
  9. W. H. Prahl, Ind. Eng. Chem., 43, 1767 (1951) https://doi.org/10.1021/ie50500a027
  10. W. K. Park, Ph. D. Thesis lnha Univ. (1973)
  11. T. M. Letcher and J. Lachwa, J. Chem. Thermodynamics, 33, 1169 (2001) https://doi.org/10.1006/jcht.2001.0834
  12. D. Abdallah, M. llham, and J. Jacques, Fluid Phase Equilibria, 203, 193 (2002) https://doi.org/10.1016/S0378-3812(02)00180-2
  13. Y. W. Kim and M. G. Kim, Korean Chem. Eng. Res., 42, 426 (2004)
  14. J. S. Kim and J. M. Lee, J. Korean lnd Eng. Chem., 15, 449 (2004)
  15. S. G. Rho and C. H. Kang, J. Korean ind. Eng Chem., 8, 893 (1997)
  16. H. Komatsu and M. Hirata, Kogyo Kogaku Zasshi, 72, 1419 (1969) https://doi.org/10.1246/nikkashi1898.72.7_1419
  17. H. S. Shim, J. H. Rhew, and J. S. Kim, J. Korean lnd Eng. Chem., 11, 290 (2000)