Alterations in the Localization of Calbindin D28K-, Calretinin-, and Parvalbumin-immunoreactive Neurons of Rabbit Retinal Ganglion Cell Layer from Ischemia and Reperfusion

  • Kwon, Oh-Ju (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Jung-Yeol (Department of Ophthalmology, College of Medicine, Kyungpook National University) ;
  • Kim, Si-Yeol (Department of Ophthalmology, College of Medicine, Kyungpook National University) ;
  • Jeon, Chang-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
  • Received : 2005.01.12
  • Accepted : 2005.03.31
  • Published : 2005.06.30

Abstract

Calcium-binding proteins are thought to play important roles in calcium buffering. The present study investigated the effects of ischemia and reperfusion on calbindin D28K, calretinin, and parvalbumin immunoreactivity in the ganglion cell layer of the rabbit. Rabbits were administered ischemic damage by increasing the intraocular pressure. After 60 and 90 min of ischemia, reperfusion (7 d) was allowed to occur. The b-wave of the electroretinogram (ERG) was reduced by more than 50% and almost 80% in retina given ischemia for 60 and 90 min, respectively. The oscillatory potential (OPs) wave was reduced approximately 50% at 60 min ischemia and 70% at 90 min ischemia. In both normal and ischemic-treated retina, calcium-binding protein immunoreactivity was seen in many cells in the ganglion cell layer. In eyes subjected to 60 min ischemia, there was a decrease of the density of calbindin D28K- (8.29%), calretinin- (14.44%), and parvalbumin- (26.83%) immunoreactive (IR) cells compared to the control retina. In eyes subjected to 90 min ischemia, there was a higher decrease of the density of calbindin D28K- (18.48%), calretinin- (33.59%), and parvalbumin- (54.26%) IR cells than at 60 min. Some calcium-binding protein-IR neurons, especially calretinin-IR neurons, showed aggregations that were abnormally packed together in retina subjected to ischemia for 90 min. The results show that calbindin D28K-, calretinin-, and parvalbumin-IR cells in the ganglion cell layer are susceptible to ischemic damage and reperfusion. The degree of reduction varied among different calcium-binding proteins and ischemic damage times. These results suggest that calbindin D28K-containing neurons are less susceptible to ischemic damage than calretinin- and parvalbumin-containing neurons in the ganglion cell layer of rabbit retina.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Adachi, K., Fujita, Y., Morizane, C., Akaike, A., Ueda, M., et al. (1998) Inhibition of NMDA receptors and nitric oxide synthase reduces ischemic injury of the retina. Eur. J. Pharmacol. 350, 53-57 https://doi.org/10.1016/S0014-2999(98)00317-3
  2. Adachi, K., Kashii, S., Masai, H., Ueda, M., Morizane, C., et al. (1998) Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch. Clin. Exp. Ophthalmol. 236, 766-774 https://doi.org/10.1007/s004170050156
  3. Baimbridge, K. G., Celio, M., and Rogers, J. H. (1992) Calciumbinding proteins in the nervous system. Trends Neurosci. 15, 303-307 https://doi.org/10.1016/0166-2236(92)90081-I
  4. Block, F. and Schwarz, M. (1998) The b-wave of the electroretinogram as an index of retinal ischemia. Gen. Pharmacol. 30, 281-287 https://doi.org/10.1016/S0306-3623(97)00359-5
  5. Buchi, E. R. (1992) Degeneration of retinal cells of the rat in pressure-induced ischemia-reperfusion damage: an electron microscopy study. Klin. Monatsbl. Augenheilkd 200, 494- 497 https://doi.org/10.1055/s-2008-1045804
  6. Casini, G., Rickman, D. W., and Brecha, N. C. (1995) AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J. Comp. Neurol. 356, 132- 142 https://doi.org/10.1002/cne.903560109
  7. Casini, G., Rickman, D. W., Trasarti, L., and Brecha, N. C. (1998) Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina. Brain Res. Dev. Brain Res. 111, 107-117 https://doi.org/10.1016/S0165-3806(98)00127-8
  8. Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375-475 https://doi.org/10.1016/0306-4522(90)90091-H
  9. Chao, H. M. and Osborne, N. N. (2001) Topically applied clonidine protects the rat retina from Ischaemia/reperfusion by stimulating alpha (2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res. 904, 126-136 https://doi.org/10.1016/S0006-8993(01)02499-4
  10. Choi, D. W. (1996) Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 6, 667-672 https://doi.org/10.1016/S0959-4388(96)80101-2
  11. Choi, D. W. (2001) Excitotoxicity, apoptosis, and ischemic stroke. J. Biochem. Mol. Biol. 34, 8-14
  12. Chun, M.-H., Kim, I.-B., Ju, W.-K., Kim, K.-Y., Lee, M.-Y., et al. (1999) Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion. Neurosci. Lett. 260, 125-128 https://doi.org/10.1016/S0304-3940(98)00973-2
  13. Flammer, J. and Orgül, S. (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog. Retin. Eye Res. 17, 267-289 https://doi.org/10.1016/S1350-9462(97)00006-2
  14. Hangai, M., Miyamoto, K., Hiroi, K., Tujikawa, A., Ogura, Y., et al. (1999) Roles of constitutive nitric oxide synthase in postischemic rat retina. Invest. Ophthalmol. Vis. Sci. 40, 450-458
  15. Hamano, K., Kiyama, H., Emson, P. C., Manabe, R., Nakauchi, M., et al. (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J. Comp. Neurol. 302, 417-424 https://doi.org/10.1002/cne.903020217
  16. Heizmann, C. W. and Braun, K. (1995) Calcium regulation by calcium-binding proteins in neurodegenerative disorders, Springer-Verlag, NY
  17. Hof, P. R., Glezer, I. I., Conde, F., Flagg, R. A., Rubin, M. B., et al. (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J. Chem. Neuroanat. 16, 77-116 https://doi.org/10.1016/S0891-0618(98)00065-9
  18. Jeon, C.-J., Strettoi, E., and Masland, R. H. (1998) The major cell populations of the mouse retina. J. Neurosci. 18, 8936- 8946
  19. Jeon, M.-H. and Jeon, C.-J. (1998) Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci. Res. 32, 75-84 https://doi.org/10.1016/S0168-0102(98)00070-4
  20. Jeon, Y.-K., Kim, S.-Y., and Jeon, C.-J. (2001) Morphology of calretinin and tyrosine hydroxylase-immunoreactive neurons in the pig retina. Mol. Cells 11, 250-256
  21. Joo, C.-K., Choi, J.-S., Ko, H.-W., Park, K.-Y., Sohn, S., et al. (1999) Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest. Ophthalmol. Vis. Sci. 40, 713-720
  22. Kageyama, T., Ishikawa, A., and Tamai, M. (2000) Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn. J. Ophthalmol. 44, 110-114 https://doi.org/10.1016/S0021-5155(99)00181-1
  23. Katano, H., Ishihara, M., Shiraishi, Y., and Kawai, Y. (2001) Effects of aging on the electroretinogram during ischemiareperfusion in rats. Jpn. J. Physiol. 51, 89-97 https://doi.org/10.2170/jjphysiol.51.89
  24. Kim, K.-Y., Ju, W.-K., and Neufeld, A. H. (2004) Neuronal susceptibility to damage: comparison of the retinas of young, old and old/caloric restricted rats before and after transient ischemia. Neurobiol. Aging 25, 491-500 https://doi.org/10.1016/j.neurobiolaging.2003.07.005
  25. Kristian, T. and Siesjo, B. K. (1998) Calcium in ischemic cell death. Stroke 29, 705-718 https://doi.org/10.1161/01.STR.29.3.705
  26. Larsen, A. K. and Osborne, N. N. (1996) Involvement of adenosine in retinal ischemia. Studies on the rat. Invest. Ophthalmol. Vis. Sci. 37, 2603-2611
  27. Lewit-Bentley, A. and Rety, S. (2000) EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637-643 https://doi.org/10.1016/S0959-440X(00)00142-1
  28. Masland, R. H. (2001) Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11, 431-436 https://doi.org/10.1016/S0959-4388(00)00230-0
  29. Massey, S. C. and Mills, S. L. (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J. Comp. Neurol. 366, 15-33 https://doi.org/10.1002/(SICI)1096-9861(19960226)366:1<15::AID-CNE2>3.0.CO;2-N
  30. Massey, S. C. and Mills, S. L. (1999) Antibody to calretinin stains AII amacrine cells in the rabbit retina: double-label and confocal analyses. J. Comp. Neurol. 411, 3-18 https://doi.org/10.1002/(SICI)1096-9861(19990816)411:1<3::AID-CNE2>3.0.CO;2-1
  31. Mikkonen, M., Alafuzoff, I., Tapiola, T., Soininen, H., and Miettinen, R. (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in alzheimer's disease. Neuroscience 92, 515-532 https://doi.org/10.1016/S0306-4522(99)00047-0
  32. Nag, T. C. and Wadhwa, S. (1999) Developmental expression of calretinin immunoreactivity in the human retina and a comparison with two other EF-hand calcium binding proteins. Neuroscience 91, 41-50 https://doi.org/10.1016/S0306-4522(98)00654-X
  33. Neufeld, A. H., Kawai, S., Das, S., Vora, S., Gachie, E., et al. (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp. Eye Res. 75, 521-528 https://doi.org/10.1006/exer.2002.2042
  34. Ng, Y. K., Zeng, X. X., and Ling, E. A. (2004) Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res. 1018, 66-72 https://doi.org/10.1016/j.brainres.2004.05.055
  35. Osborne, N. N., Wood, J., and Muller, A. (1995) The influence of experimental ischaemia on protein kinase C and the GABAergic system in the rabbit retina. Neuropharmacology 34, 1279-1288 https://doi.org/10.1016/0028-3908(95)00097-P
  36. Perlman, J. I., McCole, S. M., Pulluru, P., Chang, C. J., Lam, T. T., et al. (1996) Disturbances in the distribution of neurotransmitters in the rat retina after ischemia. Curr. Eye Res. 15, 589-596 https://doi.org/10.3109/02713689609008898
  37. Pochet, R., Pasteels, B., Seto-Ohshima, A., Bastianeli, E., Kitajima, S., et al. (1991) Calmodulin and calbindin localization in retina from six vertebrate species. J. Comp. Neurol. 314, 750-762 https://doi.org/10.1002/cne.903140408
  38. Polans, A., Baehr, W., and Palczewski, K. (1996) Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci. 19, 547-554 https://doi.org/10.1016/S0166-2236(96)10059-X
  39. Rockhill, R. L., Daly, F. J., MacNeil, M. A., Brown, S. P., and Masland, R. H. (2002) The diversity of ganglion cells in a mammalian retina. J. Neurosci. 22, 3831-3843
  40. Roger, J. H. (1987) Calretinin: a gene for a novel calciumbinding protein expressed principally in neurons. J. Cell Biol. 105, 1343-1353 https://doi.org/10.1083/jcb.105.3.1343
  41. Safa, R. and Osborne, N. N. (2000) Retinas from albino rats are more susceptible to ischaemic damage than age-matched pigmented animals. Brain Res. 862, 36-42 https://doi.org/10.1016/S0006-8993(00)02090-4
  42. Sanna, P. P., Keyser, K. T., Battenberg, E., and Bloom, F. E. (1990) Parvalbumin immunoreactivity in the rat retina. Neurosci. Lett. 118, 136-139 https://doi.org/10.1016/0304-3940(90)90267-D
  43. Sanna, P. P., Keyser, K. T., Celio, M. R., Karten, H. J., and Bloom, F. E. (1993) Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 600, 141-150 https://doi.org/10.1016/0006-8993(93)90412-G
  44. Schafer, B. W. and Heizmann, C. W. (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134-140
  45. Song, G., Yang, X., Zhang, Z., and Zhang, D. (2001) Effects of pressure induced retinal ischemia on ERG in rabbit. Yan Ke Xue Bao. 17, 213-216
  46. Toriu, N., Akaike, A., Yasuyoshi, H., Zhang, S., Kashii, S., et al. (2000) Lomerizine, a $Ca^{2+}$ channel blocker, reduces glutamate- induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp. Eye Res. 70, 475-484 https://doi.org/10.1006/exer.1999.0809
  47. Vecino, E., Caminos, E., Ugarte, M., Martin-Zanca, D., and Osborne, N. N. (1998) Immunohistochemical distribution of neurotrophins and their receptors in the rat retina and the effects of ischemia and reperfusion. Gen. Pharmacol. 30, 305- 314 https://doi.org/10.1016/S0306-3623(97)00361-3
  48. Volgyi, B., Pollak, E., Buzas, P., and Gabriel, R. (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res. 763, 79-86 https://doi.org/10.1016/S0006-8993(97)00405-8
  49. Yamamoto, T. and Kitazawa, Y. (1998) Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog. Retin. Eye Res. 17, 127-143 https://doi.org/10.1016/S1350-9462(97)00009-8