Effects of External Voltages and Widths on Fluid Velocity in Microchannel

외부전압 및 너비 변화에 따른 마이크로채널의 유체 속도 변화

  • Kim, Jin-Yong (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Hyo-Song (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Jeong-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2004.10.18
  • Accepted : 2005.02.22
  • Published : 2005.04.10

Abstract

In this work, Polydimethylsiloxane (PDMS) and SU-8 (Microchem, USA) photoresist were used to make the microchannel by soft lithographic method. To investigate the effects of external voltages and widths of the microchannel, we made the microchannel by soft lithographic method. To investigate the effects of external voltages and widths of the microchannel, we made the microchannel with various widths: $100{\mu}m,\;200{\mu}m$ and $300{\mu}m$. And each micorchannel was supplied with external voltage, respectively. As a result, the fluid velocity increased with an increase of the external voltage at the same width. It was speculated that the electrical double layer was condensed and the zeta potential increased with increase of the external voltage. The fluid velocity increased with the microchannel width increase at the same external voltage. It is concluded that the resistance in the microchannel decreased as the microchannel width increased.

본 연구에서 soft lithographic mothed 기술을 사용하여 마이크로채널을 만들기 위해 polydimethylsiloxane (PDMS)와 SU-8 감광제를 사용하였다. 외부전압과 채널너비에 대한 영향을 조사하기 위하여 마이크로채널의 너비를 $100{\mu}m,\;200{\mu}m,\;300{\mu}m$로 제작하였으며, 각각의 마이크로채널에 외부전압을 걸어 유체의 속도를 측정하였다. 그 결과 동일한 너비를 갖는 마이크로채널에 외부전압을 변화시켰을 때, 외부전압이 증가할수록 유체의 속도가 증가하였다. 이는 외부전압이 증가할수록 계면에서의 전기이중층이 압축되어 제타전위의 값이 증가하기 때문인 것으로 해석된다. 또한, 동일한 외부전압에서 마이크로채널의 너비가 증가할수록 유체의 속도가 증가하는 것으로 나타났다. 이는 채널 너비의 증가가 내부의 저항을 감소시켜 유체의 속도가 보다 빠르게 나타나는 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. M. J. Madou, Fundamentals in Microfabrication, CRC press, Boca Raton (1997)
  2. A. Manz and H. Becker, Microsystem Technology in Chemistry and Life Science, Springer (1998)
  3. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, Microelectronic Engineering, 73, 876 (2004) https://doi.org/10.1016/S0167-9317(04)00237-0
  4. M. U. Kopp, A. J. DeMello, and A. Manz, Science, 280, 1046 (1998) https://doi.org/10.1126/science.280.5366.1046
  5. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. H. Lo, Sensors and Actuators B, 97, 402 (2004) https://doi.org/10.1016/j.snb.2003.09.022
  6. H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, Polymer, 41, 6851 (2000) https://doi.org/10.1016/S0032-3861(00)00039-2
  7. T. Murakami, S. Kuroda, and Z. Osawa, J. Colloid Interface Sci., 202, 37 (1998) https://doi.org/10.1006/jcis.1997.5386
  8. Y. Liu, J. C. Fanguy, J. M. Ledsoe, and C. S. Henry, Anal. Chem., 72, 5939 (2000) https://doi.org/10.1021/ac000932l
  9. X. Ren, M. Bachman, C. Sims, G. P. Li, and N. Allbritton, J. Chromatography. B, 762, 117 (2001) https://doi.org/10.1016/S0378-4347(01)00327-9
  10. M. N. Kozicki, P. Maroufkhani, and M. Mitkova, Superlattices and Microstructures 34, 467 (2003) https://doi.org/10.1016/j.spmi.2004.03.043
  11. R. M. McCormick, Anal. Chem., 60, 2322 (1988) https://doi.org/10.1021/ac00172a003
  12. M. A. Hayes and A. G. Ewing, Anal. Chem., 64, 512 (1992) https://doi.org/10.1021/ac00029a012
  13. D. Belder, K. Elke, and H. Husmann, J. Chromatography. A, 868, 63 (2000) https://doi.org/10.1016/S0021-9673(99)01165-6
  14. N. A. Polson and M. A. Hayes, Anal. Chem., 72, 1088 (2000) https://doi.org/10.1021/ac9912698
  15. D. Sinton, C. E. Canseco, L. Ren, and D. Li, J. Colloid Interface Sci., 254, 184 (2002) https://doi.org/10.1006/jcis.2002.8584
  16. C. S. Lee, D. Mcmanigill, C. T. Wu, and B. Patel, Anal. Chem., 63, 1519 (1991) https://doi.org/10.1021/ac00015a005
  17. C. S. Lee, W. C. Blanchard, and C. T. Wu, Anal. Chem., 62, 1550 (1990) https://doi.org/10.1021/ac00213a043
  18. K. I. Inatomi, S. I. Izuo, S. S. Lee, H. Ohji, and S. Shiono, Microelectronic Engineering, 70, 13 (2003) https://doi.org/10.1016/S0167-9317(03)00361-7
  19. J. F. Chen, Q. H. Jin, J. L. Zhao, and Y. S. Xu, Biosensors and Bioelectronics, 17, 619 (2002) https://doi.org/10.1016/S0956-5663(02)00024-6
  20. Y. Deng, H. Zhang, and J. Henion, Anal. Chem., 73, 1432 (2001) https://doi.org/10.1021/ac0010328
  21. J. P. Kutter, S. C. Jacobson, and J. M. Ramsey, Anal. Chem., 69, 5165 (1997) https://doi.org/10.1021/ac970723+
  22. M. H. Oddy and J. G. Santiago, J. Colloid Interface Sci., 269, 192 (2004) https://doi.org/10.1016/S0021-9797(03)00601-5
  23. R. F. Probstein, Physicochemical Hydrodynamics, John Wiley and Sons, Inc. (1994)
  24. J. D. Kim, Interface Phenomenology, Aruka (2000)