착상 전후시기의 생쥐 자궁조직에서의 ADAM-8, 9, 10, 12, 15, 17과 ADAMTS-1 유전자의 발현

Expression of ADAM-8, 9, 10, 12, 15, 17 and ADAMTS-1 Genes in Mouse Uterus During Periimplantation Period

  • 김지영 (서울여자대학교 자연과학대학 생명공학과) ;
  • 국민지 (서울여자대학교 자연과학대학 생명공학과) ;
  • 배인희 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김해권 (서울여자대학교 자연과학대학 생명공학과)
  • Kim, Ji Young (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Koog, Min Ji (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Bae, In Hee (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kim, Haekwon (Department of Biotechnology, College of Natural Sciences, Seoul Women's University)
  • 발행 : 2005.03.30

초록

연구목적: ADAMs은 metalloprotease/disintegrin domain을 가진 transmemebrane glycoprotein으로써 지금까지 30개 이상의 ADAM 및 10개 이상의 ADAMTS가 알려져 있다. 이들의 기능은 포유동물의 수정 시 sperm-egg binding과 fusion, myoblast fusion, integrin과의 결합 등에 직접 관여하거나, TNF-alpha 등의 생체신호전달물질이 세포로부터 분비될 때에 이들의 구조를 변화시켜 활성화시키는 효소작용, 그리고 dendritic cell differentiation 등에 관여하는 것으로 알려져 있다. 그러나 자궁내막 조직에서의 유전자 및 단백질 발현 여부에 관해서는 거의 보고되어 있지 않고 있다. 본 연구에서는 착상 전후 시기의 생쥐 자궁조직에서 ADAM-8, 9, 10, 12, 15, 17 그리고 ADAMTS-1의 유전자가 발현하는 지를 알아보았다. 연구 재료 및 방법: 본 연구에서는 생쥐의 자궁조직을 대상으로 ADAM-8, 9, 10, 12, 15, 17 그리고 ADAMTS-1을 선정하여, 초기 임신 기간에서의 유전자 발현 여부를 조사하였고 이 결과를 바탕으로 자궁조직에서의 이들 유전자들의 생리적인 기능을 규명하고자 하였다. 결 과: 임신한 생쥐 자궁조직에서의 ADAM-8, 9, 10, 12, 15, 17 그리고 ADAMTS-1의 유전자 및 단백질의 발현 양상을 RT-PCR 방법을 이용하여 알아본 결과, 조사된 ADAM 종류와 임신 날짜별로 다르게 나타났다. ADAM-8의 유전자 전사체는 임신 1일째 매우 강하게 발현되었으나 임신 3일째로 진행되면서 감소하다가 이후 다시 임신 5일째가 되면서 증가하는 양상을 보였다. ADAM-9, 10, 17 그리고 ADAMTS-1의 경우는 임신 1일째에서 5일째까지 유전자의 발현 양상이 크게 변하지 않았고 ADAM-12와 ADAM-15의 유전자 전사체는 임신 1일에서 5일로 진행되면서 현저하게 증가되는 양상을 보였다. 이후 임신 6일에서 8일에서는 생쥐 배아가 착상된 부위와 비 착상부위로 나누어 유전자의 발현 양상을 관찰한 결과, 조사된 ADAM 모두 비착상 부위보다 착상부위에서 유전자 전사체의 발현이 크게 증가되는 것으로 나타났다. 결 론: 이상의 결과로 미루어 ADAM 유전자는 임신초기 착상과정과 임신 단계에 따른 자궁의 조직 재구성에 중요한 역할을 할 것으로 생각된다.

키워드

참고문헌

  1. Blankenship TN, Given RL. Loss of larninin and type IV collagen in uterine luminal epithelial basement membranes during blastocyst implantation in the mouse. Anat Rec 1995; 243: 27-36 https://doi.org/10.1002/ar.1092430105
  2. Curry TE Jr, Osteen KG The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 2003; 24: 428-65 https://doi.org/10.1210/er.2002-0005
  3. Primakoff P, Myles DO. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 2000; 16: 83-7 https://doi.org/10.1016/S0168-9525(99)01926-5
  4. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et aI. A metalloprotease disintegrin that releases tumour-necrosis factor-a from cells. Nature 1997; 385: 729-33 https://doi.org/10.1038/385033a0
  5. Moss ML, Jin SL, Milia ME, Bickett OM, Burkhart W, Carter HL, et aI. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997; 385: 733-6 https://doi.org/10.1038/385033a0
  6. Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, et aI. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 1999; 283: 91 -4 https://doi.org/10.1126/science.283.5398.91
  7. Izumi Y, Hirata M, Hasuwa H, Iwamoto R, Umata T, Miyado K, et al. A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdeita are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J 1998; 17: 7260-72 https://doi.org/10.1093/emboj/17.24.7260
  8. Evans JP. Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 2001; 23: 628-39 https://doi.org/10.1002/bies.1088
  9. Eto K, Puzon-McLaughlin W, Sheppard D, SeharaFujisawa A, Zhang XP, Takada Y. RGD-independent binding of integrin alpha9betal to the ADAM-12 and 15 disintegrin domains mediates cell-cell interaction. J BioI Chem 2000; 275: 34922-30 https://doi.org/10.1074/jbc.M001953200
  10. Cal S, Freije JM, Lopez JM, Takada Y, Lopez-Otin C. ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol BioI Cell 2000; 11: 1457-69 https://doi.org/10.1091/mbc.11.4.1457
  11. Zhou M, Graham R, Russell G, Croucher PI. MDC9 (ADAM-9/Meltrin gamma) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin. Biochem Biophys Res Commun 2001; 280: 574-80 https://doi.org/10.1006/bbrc.2000.4155
  12. Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, Kurihara Y, et al. ADAMTS-I: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 2000; 105: 1345-52 https://doi.org/10.1172/JCI8635
  13. Hurskainen TL, Hirohata S, Seldin MF, Apte SS. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J Biol Chem 1999; 274: 25555 -63 https://doi.org/10.1074/jbc.274.36.25555
  14. Naus S, Richter M, Wildeboer D, Moss M, Schachner M, Bartsch JW. Ectodomain shedding of the neural recognition molecule CHLl by the rnetalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J Biol Chem 2004; 279: 16083-90 https://doi.org/10.1074/jbc.M400560200
  15. Fourie AM, Coles F, Moreno V, Karlsson L. Catalytic activity of ADAM8, ADAMI 5, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Bioi Chem 2003; 278: 30469-77 https://doi.org/10.1074/jbc.M213157200
  16. Schlomann U, Rathke-Hartlieb S, Yamamoto S, Jockusch H, Bartsch JW. Tumor necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J Neurosci 2000; 20: 7964-71
  17. Inoue D, Reid M, Lum L, Kratzschmar J, Weskamp G, Myung YM, et al. Cloning and initial characterization of mouse meltrin beta and analysis of the expression of four metalloprotease-disintegrins In bone cells. J Biol Chem 1998; 273: 4180-7 https://doi.org/10.1074/jbc.273.7.4180
  18. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, et al. Cardiac hypertrophy is inhibited by antagonism of ADAMI2 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 2002; 8: 35-40 https://doi.org/10.1038/nm0102-35
  19. Martin J, Eynstone LV, Davies M, Williams JD, Steadman R. The role of ADAM 15 in glomerular mesangial cell migration. J Biol Chem 2002; 277: 33683-9 https://doi.org/10.1074/jbc.M200988200
  20. Zhang XP, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 1998; 273: 7345-50 https://doi.org/10.1074/jbc.273.13.7345
  21. Olson GE, Winfrey VP, Matrisian PE, NagDa, SK, Hoffinan LH. Blastocyst-dependent upregulation of metalloproteinase/disintegrin MDC9 expression in rabbit endometrium. Cell Tissue Res 1998; 293: 489 -98 https://doi.org/10.1007/s004410051141
  22. Meseguer M, Aplin JD, Caballero-Campo P, O'Connor JE, Martin JC, Remohi J, et al. Human endometrial mucin MUCI is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Bioi Reprod 2001; 64: 590-601 https://doi.org/10.1095/biolreprod64.2.590
  23. Thathiah A, Blobel CP, Carson DD. Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUCI shedding. J Biol Chem 2003; 278: 3386-94 https://doi.org/10.1074/jbc.M208326200
  24. Nath D, Siocombe PM, Webster A, Stephens PE, Docherty AJ, Murphy G. Meltrin gamma (ADAM-9) mediates cellular adhesion through alpha(6)beta(1) integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 2000; 113: 2319-28
  25. Mohan S, Thompson GR, Amaar YG, Hathaway G, Tschesche H, Baylink DJ. ADAM-9 is an insulinlike growth factor binding protein-5 protease produced and secreted by human osteoblasts. Biochemistry 2002; 41: 15394-403 https://doi.org/10.1021/bi026458q
  26. Schwettmann L, Tschesche H. Cloning and expression in Pichia pastoris of metalloprotease domain of ADAM 9 catalytically active against fibronectin. Protein Expr Purif 2001; 21: 65-70 https://doi.org/10.1006/prep.2000.1374
  27. Millichip MI, Dallas OJ, Wu E, Dale S, McKie N. The metallo-disintegrin ADAM 10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun 1998; 245: 594-8 https://doi.org/10.1006/bbrc.1998.8485
  28. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 2003; 17: 7-30 https://doi.org/10.1101/gad.1039703
  29. Mittaz L, Russell DL, Wilson T, Brasted M, Tkalcevic J, Salamonsen LA, et al. ADAMTS-1 is essential for the development and function of the urogenital system. Biol Reprod 2004; 70: 1096-105 https://doi.org/10.1095/biolreprod.103.023911
  30. Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci USA 2000; 97: 4689-94 https://doi.org/10.1073/pnas.080073497
  31. Weskamp G, Cai H, Brodie TA, Higashyama S, Manova K, Ludwig T, et al. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Bioi 2002; 22: 1537-44 https://doi.org/10.1128/MCB.22.5.1537-1544.2002
  32. Kurisaki T, Masuda A, Sudo K, Sakagami J, Higashiyama S, Matsuda Y, et aI. Phenotypic analysis of Meltrin alpha (ADAMI2)-deficient mice: involvement of Meltrin alpha in adipogenesis and myogenesis. Mol Cell Bioi 2003; 23: 55-61 https://doi.org/10.1128/MCB.23.1.55-61.2003
  33. Horiuchi K, Weskamp G, Lum L, Hammes HP, Cai H, Brodie TA, et al. Potential role for ADAMI 5 in pathological neovascularization in mice. Mol Cell Bioi 2003; 23: 5614-24 https://doi.org/10.1128/MCB.23.16.5614-5624.2003
  34. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, et aI. An essential role for ectodomain shedding in mammalian development. Science 1998; 282: 1281-84 https://doi.org/10.1126/science.282.5392.1281
  35. Rudolph-Owen LA, Hulboy DL, Wilson CL, Mudgett J, Matrisian LM. Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-ldeficient mice. Endocrinology 1997; 138: 4902-11 https://doi.org/10.1210/en.138.11.4902