DOI QR코드

DOI QR Code

Isolation and Characterization of a cDNA Encoding Two Novel Heat-shock Factor OsHSF6 and OsHSF12 in Oryza Sativa L.

  • Liu, Jin-Ge (Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences, Department of Horticulture, Nanjing Agricultural University) ;
  • Yao, Quan-Hong (Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences) ;
  • Zhang, Zhen (Department of Horticulture, Nanjing Agricultural University) ;
  • Peng, Ri-He (Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences) ;
  • Xiong, Ai-Sheng (Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences) ;
  • Xu, Fang (Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences) ;
  • Zhu, Hong (Agro-Biotechnology Research Center of Shanghai Academy of Agricultural Sciences)
  • Published : 2005.09.30

Abstract

As a crucial transcription factor family, heat-shock factors were mainly analyzed and characterized in tomato and Arabidopsis. In this study, we isolated two putative heat shock factors OsHSF6 and OsHSF12 that interact specifically with heat-shock element (HSE) from Oryza sativa L by yeast one-hybrid method. The full-length cDNA of OsHSF6 and OsHSF12 have 1074bp and 920bp open reading frame (ORF), respectively. Analysis of the deduced amino acid sequences revealed that OsHSF6 was a class A heat shock factor (HSF) with all the conserved sequence elements characteristic of heat stress transcription factor, while OsHSF12 was a class B HSF with C-terminal domain (CTD) lacking of AHA motif. Bioinformatic analysis showed that the sequences and structures of two HSFs' DNA binding domain (DBD) had a high similarity with LpHSF24. The results of RT-PCR indicated OsHSF6 gene was expressed immediately after rice plants exposure to heat stress, and the transcription of OsHSF6 gene accumulated primarily in immature seeds, roots and leaves. However, we did not find the transcription of OsHSF12 gene in different organs and growth periods. Our results implied that OsHSF6 might be function as a HSF regulating early expression of stress genes in response to heat shock, and OsHSF12 might be act as a synergistic factor to regulate the expression of down-stream genes.

Keywords

References

  1. Almoguera, C., Rojas, A., Diaz-Martin, J., Prieto-Dapena, P., Carranco, R. and Jordano, J. (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J. Biol. Chem. 277, 43866-43872 https://doi.org/10.1074/jbc.M207330200
  2. Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S. K., Nover, L., Port, M., Scharf, K-D., Tripp, J., Zielinski, D. and von Koskull-Doring, P. (2004) Heat stress response in plants: a complex game with chaperones and more than 20 heat stress transcription factors. J. Biosci. 29, 471-487 https://doi.org/10.1007/BF02712120
  3. Bharti, K., Schmidt, E., Lyck, R., Bublak, D. and Scharf, K. D. (2000) Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J. 22, 355-365 https://doi.org/10.1046/j.1365-313x.2000.00746.x
  4. Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Korbitzer, A., Treuter, E. and Nover, L. (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP. Plant Cell 16, 1521-1535 https://doi.org/10.1105/tpc.019927
  5. Busch, W., Wunderlich, M. and Schöffl, F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41, 1-14 https://doi.org/10.1111/j.1365-313X.2004.02272.x
  6. Clos, J., Westwood, J. T., Becker, P. B., Wilson, S., Lambert, K. and Wu, C. (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell. 63, 1085-1097 https://doi.org/10.1016/0092-8674(90)90511-C
  7. Czarnecka-Verner, E., Yuan, C. X., Scharf, K. D., Englich, G. and Gurley, W. B. (2000) Plants contain a novel multi-member family of heat shock transcription factors without the transcriptional activation potential. Plant Mol. Biol. 43, 459-471 https://doi.org/10.1023/A:1006448607740
  8. Doring, P., Treuter, E., Kistner, C., Lyck, R., Chen, A. and Nover, L. (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell. 12, 265-278 https://doi.org/10.1105/tpc.12.2.265
  9. Guarente, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Method Enzymol. 101, 181-191 https://doi.org/10.1016/0076-6879(83)01013-7
  10. Harrison, C. J., Bohm, A. A. and Nelson, H. C. M. (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263, 224-227 https://doi.org/10.1126/science.8284672
  11. Heerklotz, D., Döring, P., Bonzelius, F., Winkelhaus, S. and Nover, L. (2001) The balance of nuclear import and export determines the intracellular distribution of tomato heat stress transcription factor HsfA2. Mol. Cell. Biol. 21, 1759-1768 https://doi.org/10.1128/MCB.21.5.1759-1768.2001
  12. Kim, B.-H. and Schoffl, F. (2002). Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. J. Exp. Bot. 53, 371-375 https://doi.org/10.1093/jexbot/53.367.371
  13. Kotak, S., Port, M., Ganguli, A., Bicker, F. and von Koskull-Doring, P. (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsf) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 39, 98-112 https://doi.org/10.1111/j.1365-313X.2004.02111.x
  14. Mishra, S. K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L. and Scharf, K. D. (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555-1567 https://doi.org/10.1101/gad.228802
  15. Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796 https://doi.org/10.1101/gad.12.24.3788
  16. Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A. and Scharf, K. D. (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones. 6, 177-189 https://doi.org/10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
  17. Nover, L., Scharf, K. D., Gagliardi, D., Vergne, P., Czarnecka-Verner, E. and Gurley, W. B. (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones. 1, 215-223 https://doi.org/10.1379/1466-1268(1996)001<0215:THWCAP>2.3.CO;2
  18. Port, M., Tripp, J., Zielinski, D., Weber, C., Heerklotz, D., Winkelhaus, S., Bubla, K-D. and Scharf, K-D. (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2; Plant Physiol. 135, 1457-1470 https://doi.org/10.1104/pp.104.042820
  19. Scharf, K. D., Heider, H., Höhfeld, I., Lyck, R., Schmidt, E. and Nover, L. (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell. Biol. 18, 2240-2251
  20. Schoffl, F, Prandl, R. and Reindl, A. (1998) Regulation of the heat-shock response. Plant Physiol. 117, 1135-1141 https://doi.org/10.1104/pp.117.4.1135
  21. Schultheiss, J., Kunert, O., Gase, U., Scharf, K. D., Nover, L. and Ruterjans, H. (1996) Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Eur. J. Biochem. 236, 911-921 https://doi.org/10.1111/j.1432-1033.1996.00911.x
  22. Sorger, P. K. and Pelham, H. R. (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperaturedependent phosphorylation. Cell. 54, 855-864 https://doi.org/10.1016/S0092-8674(88)91219-6
  23. Treuter, E., Nover, L., Ohme, K. and Scharf, K. D. (1993) Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol. Gen. Genet. 240, 113-125 https://doi.org/10.1007/BF00276890
  24. Vuister, G. W., Kim, S.-J., Orosz, A., Marquard, J., Wu, C. and Bax, A. (1994) Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nature Struct. Biol. 1, 605-613 https://doi.org/10.1038/nsb0994-605
  25. Wiederrecht, G., Seto, D. and Parker, C. S. (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell. 54, 841-853 https://doi.org/10.1016/S0092-8674(88)91197-X
  26. Yamanouchi, U., Yano, M., Lin, H., Ashikari, M. and Yamada, K. (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA 99, 7530-7535

Cited by

  1. Expression Profiles of Class A Rice Heat Shock Transcription Factor Genes Under Abiotic Stresses vol.53, pp.2, 2010, https://doi.org/10.1007/s12374-010-9099-6
  2. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis vol.227, pp.5, 2008, https://doi.org/10.1007/s00425-007-0670-4
  3. Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses vol.54, pp.2, 2010, https://doi.org/10.1007/s10535-010-0039-6
  4. Advances in Transgenic Rice Biotechnology vol.26, pp.2, 2007, https://doi.org/10.1080/07352680701252809
  5. De novo assembly and transcriptome characterization: novel insights into the temperature stress in Cryptotaenia japonica Hassk vol.37, pp.1, 2015, https://doi.org/10.1007/s11738-014-1739-x
  6. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis vol.35, pp.2, 2008, https://doi.org/10.1016/S1673-8527(08)60016-8
  7. Preliminary Functional Analysis of the Isoforms of OsHsfA2a (Oryza sativa L.) Generated by Alternative Splicing vol.31, pp.1, 2013, https://doi.org/10.1007/s11105-012-0471-1
  8. Alterations of Alternative Splicing Patterns of Ser/Arg-Rich (SR) Genes in Response to Hormones and Stresses Treatments in Different Ecotypes of Rice (Oryza sativa) vol.12, pp.5, 2013, https://doi.org/10.1016/S2095-3119(13)60260-9
  9. The Accumulation of Glycine Betaine Is Dependent on Choline Monooxygenase (OsCMO), Not on Phosphoethanolamine N-Methyltransferase (OsPEAMT1), in Rice (Oryza sativa L. ssp. japonica) vol.32, pp.4, 2014, https://doi.org/10.1007/s11105-014-0703-7