DOI QR코드

DOI QR Code

The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H. (Department of Animal Science, National Taiwan University) ;
  • Wang, Y.C. (Department of Animal Science, National Taiwan University) ;
  • Kuo, C.F. (Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University) ;
  • Cheng, W.M. (Department of Animal Science, National Taiwan University) ;
  • Shen, T.F. (Department of Animal Science, National Taiwan University) ;
  • Ding, Shih-Torng (Department of Animal Science, National Taiwan University)
  • Received : 2004.11.04
  • Accepted : 2005.03.21
  • Published : 2005.10.01

Abstract

To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.

Keywords

References

  1. Bell, A. R., R. Savory, N. J. Horley, A. I. Choudhury, M. Dickins, T. J. Gray, A. M. Salter and D. R. Bell. 1998. Molecular basis of non-responsiveness to peroxisome proliferators: the guineapig PPARalpha is functional and mediates peroxisome proliferator- induced hypolipidaemia. Biochem. J. 332:689-693.
  2. Brown, M. S. and J. L. Goldstein. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331-40.
  3. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162:156-159.
  4. Desvergne, B. and W. Wahli. 1999. Peroxisome proliferatoractivated receptors: nuclear control of metabolism. Endocr. Rev. 20:649-688.
  5. Ding, S. T., R. L. McNeel and H. J. Mersmann. 1999. Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo. Comp. Biochem. Physiol. B 123:307-318.
  6. Ding, S. T., A. P. Schinckel, T. E. Weber and H. J. Mersmann. 2000. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. J. Anim. Sci. 78:2127-2134.
  7. Ding, S. T. and H. J. Mersmann. 2001. Fatty acids modulate porcine adipocyte differentiation and transcripts for transcription factors and adipocyte-characteristic proteins. J. Nutr. Biochem. 12:101-108.
  8. Ding, S. T., R. L. McNeel and H. J. Mersmann. 2002. Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids. In vitro Cell. Dev. Biol. Ani. 38:352-357.
  9. Ding, S. T., A. Lapillonne, W. C. Heird and H. J. Mersmann. 2003a. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs. J. Anim. Sci. 81:423-432.
  10. Ding, S. T., M. Wang and H. J. Mersmann. 2003b. Effect of unsaturated fatty acids on porcine adipocyte differentiation. Nutr. Res. 23:1059-1069.
  11. Ding, S. T., B. H. Liu and Y. H. Ko. 2004. Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs. J. Anim. Sci. 82:3162-3174.
  12. Eder, K., H. Nonn and H. Kluge. 2001. The fatty acid composition of lipids from muscle and adipose tissues of pigs fed various oil mixtures differing in their ratio between oleic acid and linoleic acid. Eur. J. Lipid Sci. Technol. 103:668-676.
  13. Folch, J., M. Lees, G. H. Sloane and S. Stanley. 1957. A simple method for isolation and purification of total lipids for animal tissues. J. Biol. Chem. 226:497-509.
  14. Gondret, F., P. Ferre and I. Dugail. 2001. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J. Lipid Res. 42:106-113.
  15. Grigorios, K., B. Olivier, L. Fabienne, K. Eric, P. Mai, G. P. Malcolm and W. Walter. 1997. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11:779-791.
  16. Hannah, V. C., J. Ou, A. Luong, J. L. Goldstein and M. S. Brown. 2001. Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-292 cells. J. Biol. Chem. 276:4365-4372.
  17. Horton, J. D., H. Shimano, R. L. Hamilton, M. S. Brown and J. L. Goldstein. 1999. Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J. Clin. Invest. 103:1067-1076.
  18. Hsu, J. M. and S. T. Ding. 2003. Effect of polyunsaturated fatty acids on the expression of transcription factor ADD1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocytes. Br. J. Nutr. 90:507-513.
  19. Hsu, J. M., P. H. Wang, B. H. Liu and S. T. Ding. 2004. The effect of dietary docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J. Anim. Sci. 82:683-689.
  20. Kim, J. B. and B. M. Spiegelman. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10:1096-1107. https://doi.org/10.1101/gad.10.9.1096
  21. Kim, J. B., H. M. Wright, M. Wright and B. M. Spiegelman. 1998. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA. 95:4333-4337.
  22. Kim, H. J., M. Takahashi and O. Ezaki. 1999. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J. Biol. Chem. 274:25892-25898. https://doi.org/10.1074/jbc.274.36.25892
  23. Kliewer, S. A., S. S. Sundseth, S. A. Jones, P. J. Brown, G. B. Wisely, C. S. Koble, P. Devchand, W. Wahli, T. M. Willson, J. M. Lenhard and J. M. Lehmann. 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA. 94:4318-4323.
  24. Mason, J. V. and R. F. Sewell. 1967. Influence of diet on the fatty acid composition of swine tissues. J. Anim. Sci. 26:1342-1347.
  25. McNeel, R. L. and H. J. Mersmann. 1999. Distribution and quantification of beta 1-, beta 2-, and beta 3-adrenergic receptor subtype transcripts in porcine tissues. J. Anim. Sci. 77:611-621.
  26. Park, Y. and W. S. Harris. 2003. Omega-3 fatty acid supplementation accelerates chyromicron triglyceride clearance. J. Lipid Res. 44:455-463.
  27. SAS User’s Guide: Statistics. 2001. SAS Institute, Inc., Raleigh. NC.
  28. Sink, J. D., J. I. Watkins, J. H. Ziegler and R. C. Miller. 1964. Analysis of fat deposition in swine by gas-liquid chromatography. J. Anim. Sci. 23:121-125.
  29. Smith, D. R., D. A. Knabe, H. R. Cross and S. B. Smith. 1996. A diet containing myristoleic plus palmitoleic acids elevates plasma cholesterol in young growing swine. Lipids 31:849-858.
  30. Wang, P. H., Y. H. Ko, B. H. Liu, H. M. Peng, M. Y. Lee, C. Y. Chen, Y. C. Li and S. T. Ding. 2004. The expression of porcine adiponectin and stearoyl coenzyme A desaturase genes in differentiating adipocytes. Asian-Aust. J. Anim. Sci. 17:588-593.
  31. Xu, J., M. T. Nakamura, H. P. Cho and S. D. Clarke. 1999. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem. 274:23577-23583.
  32. Xu, J., M. Teran-Garcia, J. H. Park, M. T. Nakamura and S. D. Clarke. 2001. Polyunsaturated fatty acids suppress hepatic sterol regulatory element- binding protein-1 expression by accelerating transcript decay. J. Biol. Chem. 276:9800-9807.
  33. Yahagi, N., H. Shimano, A. H. Hasty, M. Amemiya-Kudo, H. Okazaki, Y. Tamura, Y. Iizuka, F. Shionoiri, K. Ohashi, J. Osuga, K. Harada, T. Gotoda, R. Nagai, S. Ishibashi and N. Yamada. 1999. A crucial role of sterol regulatory elementbinding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274:35840-35844.
  34. Yen, C. F., Y. N. Jiang, T. F. Shen, I. M. Wong, C. C. Chen, K. C. Chen, W. C. Chang, Y. K. Tsao and S. T. Ding. 2004. Cloning and expression of the genes associated with lipid metabolism in Tsaiya ducks. Poult. Sci. 84:67-74.
  35. Ying, C., M. A. Chan, W. T. K. Cheng and W. F. Hong. 2003. Coexpression and sequence determination of estrogen receptor variant messenger RNAs in swine uterus. Asian-Aust. J. Anim. Sci. 16:1716-1721.
  36. Yang, C. C., H. S. Chang, C. J. Lin, C. C. Hsu, J. I. Cheng, L. Hwu and W. T. K. Cheng. 2004. Cock spermatozoa serve as the gene vector for generation of transgenic chicken (Gallus gallus). Asian-Aust. J. Anim. Sci. 17:885-891.

Cited by

  1. Effects of soyabean meal- or whey-based diets on lipid metabolism in weaned piglets vol.99, pp.1, 2014, https://doi.org/10.1111/jpn.12197
  2. Docosahexaenoic acid increases accumulation of adipocyte triacylglycerol through up-regulation of lipogenic gene expression in pigs vol.16, pp.1, 2017, https://doi.org/10.1186/s12944-017-0428-3
  3. Abundantly expressed genes in pig adipose tissue: An expressed sequence tag approach1 vol.84, pp.10, 2006, https://doi.org/10.2527/jas.2005-737
  4. Serum Amyloid A Protein Regulates the Expression of Porcine Genes Related to Lipid Metabolism vol.138, pp.4, 2008, https://doi.org/10.1093/jn/138.4.674
  5. Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β2-AR pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1260-0
  6. Effects of Dietary Algal Docosahexaenoic Acid Oil Supplementation on Fatty Acid Deposition and Gene Expression in Laying Tsaiya Ducks vol.19, pp.7, 2005, https://doi.org/10.5713/ajas.2006.1047
  7. The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes vol.20, pp.5, 2005, https://doi.org/10.5713/ajas.2007.768
  8. Meat Quality, Digestibility and Deposition of Fatty Acids in Growing-finishing Pigs Fed Restricted, Iso-energetic Amounts of Diets Containing either Beef Tallow or Sunflower Oil vol.21, pp.7, 2005, https://doi.org/10.5713/ajas.2008.70515
  9. Insulin regulates the expression of adiponectin and adiponectin receptors in porcine adipocytes vol.34, pp.4, 2005, https://doi.org/10.1016/j.domaniend.2007.10.003
  10. Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA vol.22, pp.4, 2009, https://doi.org/10.5713/ajas.2009.80422