DOI QR코드

DOI QR Code

Expression of Cholera Toxin B Subunit and Assembly as Functional Oligomers in Silkworm

  • Gong, Zhao-Hui (Institute of Biochemistry, College of Life Sciences, Zhejiang University) ;
  • Jin, Hui-Qing (Institute of Biochemistry, College of Life Sciences, Zhejiang University) ;
  • Jin, Yong-Feng (Institute of Biochemistry, College of Life Sciences, Zhejiang University) ;
  • Zhang, Yao-Zhou (Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University)
  • Published : 2005.11.30

Abstract

The nontoxic B subunit of cholera toxin (CTB) can significantly increase the ability of proteins to induce immunological tolerance after oral administration, when it was conjugated to various proteins. Recombinant CTB offers great potential for treatment of autoimmune disease. Here we firstly investigated the feasibility of silkworm baculovirus expression vector system for the cost-effective production of CTB under the control of a strong polyhedrin promoter. Higher expression was achieved via introducing the partial non-coding and coding sequences (ATAAAT and ATGCCGAAT) of polyhedrin to the 5' end of the native CTB gene, with the maximal accumulation being approximately 54.4 mg/L of hemolymph. The silkworm bioreactor produced this protein vaccine as the glycoslated pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB. Further studies revealed that mixing with silkworm-derived CTB increases the tolerogenic potential of insulin. In the nonconjugated form, an insulin : CTB ratio of 100 : 1 was optimal for the prominent reduction in pancreatic islet inflammation. The data presented here demonstrate that the silkworm bioreactor is an ideal production and delivery system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes and CTB functions as an effective mucosal adjuvant for oral tolerance induction.

Keywords

References

  1. Anjuere, F., George-Chandy, A., Audant, F., Rousseau, D., Holmgren, J. and Czerkinsky, C. (2003) Transcutaneous immunization with cholera toxin B subunit adjuvant suppresses IgE antibody responses via selective induction of Th1 immune responses. J. Immunol. 170, 1586-1592 https://doi.org/10.4049/jimmunol.170.3.1586
  2. Arakawa, T., Chong, D. K., Merritt, J. L. and Langridge, W. H (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res. 6, 403-413 https://doi.org/10.1023/A:1018487401810
  3. Areas, A. P., Oliveira, M. L., Ramos, C. R., Sbrogio-Almeida, M. E., Raw, I. and Ho, P. L. (2002) Synthesis of cholera toxin B subunit gene: cloning and expression of a functional 6XHistagged protein in Escherichia coli. Protein Expr. Purif. 25, 481- 487 https://doi.org/10.1016/S1046-5928(02)00026-8
  4. Bergerot, I., Ploix, C., Petersen, J., Moulin, V., Rask, C., Fabien, N., Lindblad, M., Mayer, A., Czerkinsky, C., Holmgren, J. and Thivolet, C. (1997) A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc. Natl. Acad. Sci. USA 94, 4610-4614
  5. Bolmstedt, A., Hinkula, J., Rowcliffe, E., Biller, M., Wahren, B. and Olofsson, S. (2001) Enhanced immunogenicity of a human immunodeficiency virus type 1 env DNA vaccine by manipulating N-glycosylation signals. Effects of elimination of the V3 N306 glycan. Vaccine 20, 397-405 https://doi.org/10.1016/S0264-410X(01)00358-9
  6. Bregenholt, S., Wang, M., Wolfe, T., Hughes, A., Baerentzen, L., Dyrberg, T., von Herrath, M. G. and Petersen, J. S. (2003) The cholera toxin B subunit is a mucosal adjuvant for oral tolerance induction in type 1 diabetes. Scand. J. Immunol. 57, 432-438 https://doi.org/10.1046/j.1365-3083.2003.01248.x
  7. Burkart, V., Kim, Y., Kauer, M. and Kolb, H. (1999) Induction of tolerance in macrophages by cholera toxin B chain. Pathobiology 67, 314-317 https://doi.org/10.1159/000028088
  8. Carbonell, L. F. and Miller, L. K. (1987) Baculovirus interaction with nontarget organisms: a virus-borne reporter gene is not expressed in two mammalian cell lines. Appl. Environ. Microbiol. 53, 1412-1417
  9. Charlton, B. and Mandel, T. E. (1988) Progression from insulitis to beta-cell destruction in NOD mouse requires L3T4+ Tlymphocytes. Diabetes 37, 1108-1112 https://doi.org/10.2337/diabetes.37.8.1108
  10. Cuatrecasas, P. (1973) Gangliosides and membrane receptors for cholera toxin. Biochemistry 12, 3558-3566 https://doi.org/10.1021/bi00742a032
  11. Daniell, H., Lee, S. B., Panchal, T. and Wiebe, P. O. (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311, 1001-1009 https://doi.org/10.1006/jmbi.2001.4921
  12. Gong, Z., Jin, Y. and Zhang, Y. (2005) Oral administration of a cholera toxin B subunit-insulin fusion protein produced in silkworm protects against autoimmune diabetes. J. Biotechnol. 119, 93-105 https://doi.org/10.1016/j.jbiotec.2005.05.027
  13. Hashimoto, Y., Oshima, A., Narimatsu, H. and Suzuki, A. (1996) Expression of the cholera toxin B subunit in the Golgi apparatus of Swiss 3T3 cells inhibits DNA synthesis induced by basic fibroblast growth factor. J. Biochem. Tokyo 119, 985- 990 https://doi.org/10.1093/oxfordjournals.jbchem.a021339
  14. Hein, M. B., Yeo, T., Wang, F. and Sturtevant, A. (1996) Expression of cholera toxin subunits in plants. Ann. NY. Acad. Sci. 792, 50-56 https://doi.org/10.1111/j.1749-6632.1996.tb32490.x
  15. Herrington, D. A., Losonsky, G. A., Smith, G., Volvovitz, F., Cochran, M., Jackson, K., Hoffman, S. L., Gordon, D. M., Levine, M. M. and Edelman, R. (1992) Safety and immunogenicity in volunteers of a recombinant Plasmodium falciparum circumsporozoite protein malaria vaccine produced in Lepidopteran cells. Vaccine 10, 841-846 https://doi.org/10.1016/0264-410X(92)90047-N
  16. Holmgren, J., Adamsson, J., Anjuere, F., Clemens, J., Czerkinsky, C., Eriksson, K., Flach, C. F., George-Chandy, A., Harandi, A. M., Lebens, M., Lehner, T., Lindblad, M., Nygren, E., Raghavan, S., Sanchez, J., Stanford, M., Sun, J. B., Svennerholm, A. M. and Tengvall, S. (2005) Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol. Lett. 97, 181-188 https://doi.org/10.1016/j.imlet.2004.11.009
  17. Ishida, N., Tsujimoto, M., Kanaya, T., Shimamura, A., Tsuruoka, N., Kodama, S., Katayama, T., Oikawa, S., Matsui, M., Nakanishi, T., Kobayashi, J. and Nakazato, H. (1994) Expression and characterization of human bone morphogenetic protein-2 in silkworm larvae infected with recombinant Bombyx mori nuclear polyhedrosis virus. J. Biochem (Tokyo). 115, 279-285 https://doi.org/10.1093/oxfordjournals.jbchem.a124329
  18. Jani, D., Meena, L. S., Rizwan-ul-Haq, Q. M., Singh, Y., Sharma, A. K. and Tyagi, A. K. (2002) Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res. 11, 447- 454 https://doi.org/10.1023/A:1020336332392
  19. Joosten, C. E., Park, T. H. and Shuler, M. L. (2003) Effect of silkworm hemolymph on N-linked glycosylation in two Trichoplusia ni insect cell lines. Biotechnol. Bioeng. 83, 695- 705 https://doi.org/10.1002/bit.10696
  20. Kost, T. A., Condreay, J. P. and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567-575 https://doi.org/10.1038/nbt1095
  21. Kulakosky, P. C., Hughes, P. R. and Wood, H. A. (1998) NLinked glycosylation of a baculovirus-expressed recombinant glycoprotein in insect larvae and tissue culture cells. Glycobiology 8, 741-745 https://doi.org/10.1093/glycob/8.7.741
  22. Lebens, M., Johansson, S., Osek, J., Lindblad, M. and Holmgren, J. (1993) Large-scale production of Vibrio cholerae toxin B subunit for use in oral vaccines. Biotechnology (NY) 11, 1574- 1578 https://doi.org/10.1038/nbt1293-1574
  23. Li, T. K. and Fox, B. S. (1996) Cholera toxin B subunit binding to an antigen presenting cell directly co-stimulates cytokine production from a T cell clone. Int. Immunol. 8, 1849-1856 https://doi.org/10.1093/intimm/8.12.1849
  24. Lowe, J. B. (2001) Glycosylation, immunity, and autoimmunity. Cell 104, 809-812 https://doi.org/10.1016/S0092-8674(01)00277-X
  25. Ma, S. W., Huang, Y., Davis, A., Yin, Z. Q., Mi, Q. S., Menassa, R., Brandle, J. E. and Jevnikar, A. M. (2005) Production of biologically active human interleukin-4 in transgenic tobacco and potato. Plant Biotechnol. J. 3, 309-318 https://doi.org/10.1111/j.1467-7652.2005.00125.x
  26. Maeyama, J., Isaka, M., Yasuda, Y., Matano, K., Kozuka, S., Taniguchi, T., Ohkuma, K., Tochikubo, K. and Goto, N. (2001) Cytokine responses to recombinant cholera toxin B subunit produced by Bacillus brevis as a mucosal adjuvant. Microbiol. Immunol. 45, 111-117 https://doi.org/10.1111/j.1348-0421.2001.tb01276.x
  27. Massotte, D. (2003) G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim. Biophys. Acta. 1610, 77-89 https://doi.org/10.1016/S0005-2736(02)00720-4
  28. McSorley, S. J., Rask, C., Pichot, R., Julia, V., Czerkinsky, C. and Glaichenhaus, N. (1998) Selective tolerization of Th1-like cells after nasal administartion of cholera toxoid-LACK conjugate. Eur. J. Immunol. 28, 424-432 https://doi.org/10.1002/(SICI)1521-4141(199802)28:02<424::AID-IMMU424>3.0.CO;2-U
  29. Miller, L. K. (1988) Baculoviruses as gene expression vectors. Annu. Rev. Microbiol. 42, 177-199 https://doi.org/10.1146/annurev.mi.42.100188.001141
  30. Pierre, P., Denis, O., Bazin, H., Mbongolo, E. M. and Vaerman, J. P. (1992) Modulation of oral tolerance to ovalbumin by cholera toxin and its B subunit. Eur. J. Immunol. 22, 3179-3182 https://doi.org/10.1002/eji.1830221223
  31. Rask, C., Holmgren, J., Frederiksson, M., Lindblad, M., Nordstrom, I., Sun, J. B. and Czerkinsky, C. (2000) Prolonged oral treatment with low doses of allergen conjugated to cholera toxin B subunit suppresses immunoglobulin E antibody responses in sensitized mice. Clin. Exp. Allergy 30, 1024-1032 https://doi.org/10.1046/j.1365-2222.2000.00849.x
  32. Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. and Dwek, R. A. (2001) Glycosylation and the immune system. Science 291, 2370-2376 https://doi.org/10.1126/science.291.5512.2370
  33. Sobel, D. O., Yankelevich, B., Goyal, D., Nelson, D. and Mazumder, A. (1998) The B-subunit of cholera toxin induces immunoregulatory cells and prevents diabetes in the NOD mouse. Diabetes 47, 186-191 https://doi.org/10.2337/diabetes.47.2.186
  34. Sun, J. B., Holmgren, J. and Czerkinsky, C. (1994) Cholera toxin B subunit: An efficient transmucosal carrier-delivery system for induction of peripheral tolerance. Proc. Natl. Acad. Sci. USA 91, 10795-10799
  35. Sun, J. B., Li, B. L., Czerkinsky, C. and Holmgren, J. (2000) Enhanced immunological tolerance against allograft rejection by oral administration of allogenic antigen linked to cholera toxin B subunit. Clin. Immunol. 97, 130-139 https://doi.org/10.1006/clim.2000.4927
  36. Sun, J. B., Rask, C., Olson, T., Holmgren, J. and Czerkinsky, C. (1996) Treatment of experimental autoimmune enchephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc. Natl. Acad. Sci. USA 93, 7196-7201
  37. Tochikubo, K., Isaka, M., Yasuda, Y., Kozuka, S., Matano, K., Miura, Y. and Taniguchi, T. (1998) Recombinant cholera toxin B subunit acts as an adjuvant for the mucosal and systemic responses of mice to mucosally co-administered bovine serum albumin. Vaccine 16, 150-155 https://doi.org/10.1016/S0264-410X(97)00194-1
  38. Wang, X. G., Zhang, G. H., Liu, C. X., Zhang, Y. H., Xiao, C. Z. and Fang, R. X. (2001) Purified cholera toxin B subunit from transgenic tobacco plants possesses authentic antigenicity. Biotechnol. Bioeng. 72, 490-494 https://doi.org/10.1002/1097-0290(20010220)72:4<490::AID-BIT1011>3.0.CO;2-0
  39. Wang, X. Z., Ooi, B. G. and Miller, L. K. (1991) Baculovirus vectors for multiple gene expression and for occluded virus production. Gene 100, 131-137 https://doi.org/10.1016/0378-1119(91)90358-I
  40. Wu, H. Y. and Russell, M. W. (1998) Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant. Vaccine 16, 286-292 https://doi.org/10.1016/S0264-410X(97)00168-0
  41. Yasuda, Y., Matano, K., Asai, T. and Tochikubo, K. (1998) Affinity purification of recombinant cholera toxin B subunit oligomer expressed in Bacillus brevis for potential human use as a mucosal adjuvant. FEMS Immunol. Med. Microbiol. 20, 311-318 https://doi.org/10.1111/j.1574-695X.1998.tb01141.x
  42. Zhang, P., Yang, Q. B., Balkovetz, D. F., Lewis, J. P., Clements, J. D., Michalek, S. M. and Katz, J. (2005) Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis. Vaccine 23, 4734-4744 https://doi.org/10.1016/j.vaccine.2005.05.004

Cited by

  1. Silkworm expression system as a platform technology in life science vol.85, pp.3, 2010, https://doi.org/10.1007/s00253-009-2267-2
  2. Prolonged survival time of allografts by the oral administration of RDP58 linked to the cholera toxin B subunit vol.27, pp.2-3, 2012, https://doi.org/10.1016/j.trim.2012.06.004
  3. Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy vol.22, pp.11, 2016, https://doi.org/10.1007/s11655-015-2128-z
  4. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications vol.7, pp.3, 2015, https://doi.org/10.3390/toxins7030974
  5. Analysis of Hemocyte-specific Gene Expression from Bombyx mori vol.23, pp.1, 2011, https://doi.org/10.7852/ijie.2011.23.1.137
  6. Oral vaccination: where we are? vol.4, pp.4, 2007, https://doi.org/10.1517/17425247.4.4.323
  7. Cloning and expression of a cholera toxin beta subunit in Escherichia coli vol.60, pp.3, 2010, https://doi.org/10.1007/s13213-010-0062-z
  8. Characterization of the Promoter Controling the Stage-Specific Gene Expression of Bombyx mori vol.21, pp.10, 2011, https://doi.org/10.5352/JLS.2011.21.10.1466
  9. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018102