DOI QR코드

DOI QR Code

Expression of Cu/Zn SOD Protein Is Suppressed in hsp 70.1 Knockout Mice

  • Choi, S-Mi (College of Nursing, Seoul National University) ;
  • Park, Kyung-Ae (Department of Hotel Culinary Arts and Nutrition, Kaya University) ;
  • Lee, Hee-Joo (College of Nursing, Seoul National University) ;
  • Park, Myoung-Sook (College of Nursing, Seoul National University) ;
  • Lee, Joung-Hee (College of Nursing, Seoul National University) ;
  • Park, Kyoung-Chan (Department of Dermatology, College of Medicine, Seoul National University) ;
  • Kim, Man-Ho (Department of Neurology, College of Medicine, Seoul National University) ;
  • Lee, Seung-Hoon (Department of Neurology, College of Medicine, Seoul National University) ;
  • Seo, Jeong-Sun (Department of Biochemistry, College of Medicine, Seoul National University) ;
  • Yoon, Byung-Woo (Department of Neurology, College of Medicine, Seoul National University)
  • Published : 2005.01.31

Abstract

Heat shock proteins (HSPs) are known to protect cells from oxidative stress and other types of injuries. We previously reported the neuroprotective effect of HSP70 following cerebral ischemia and reperfusion using hsp 70.1 knockout (KO) mice. However, the precise role of HSP70 in neuroprotection has not been established yet. The purpose of this study was to investigate the relationship between HSP70 and antioxidant enzymes using hsp 70.1 KO mice. The activities of both SOD-1 and SOD-2 were significantly decreased in hsp 70.1 KO mice than in the wild type (WT) littermates. SOD-1 protein level in the hsp 70.1 KO mice was lower than that of WT. We speculate that HSP70 might be involved in regulation of expression of SOD-1 at the level of transcription or by post-transcriptional modification.

Keywords

References

  1. Aebi, H. (1984) Catalase in Vitro. Methods Enzymol. 105, 121- 126 https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Amin, V., Cumming, D. V. and Latchman, D. S. (1996) Overexpression of heat shock protein 70 protects neuronal cells against both thermal and ischaemic stress but with different efficiencies. Neurosci. Lett. 206, 45-48 https://doi.org/10.1016/0304-3940(96)12421-6
  3. Auyeung, Y., Sievers, R. E., Weng, D., Barbosa, V. and Wolfe, C. L. (1995) Catalase inhibition with 3-amino-1,2,4-triazole does not abolish infarct size reduction in heat-shocked rats. Circulation 92, 3318-3322 https://doi.org/10.1161/01.CIR.92.11.3318
  4. Chan, P. H. (1996) Role of oxidants in ischemic brain damage. Stroke 27, 1124-1129 https://doi.org/10.1161/01.STR.27.6.1124
  5. Currie, R. W., Karmazyn, M., Kloc, M. and Mailer, K. (1988) Heat- shock response is associated with enhanced postischemic ventricular recovery. Circ. Res. 63, 543-549 https://doi.org/10.1161/01.RES.63.3.543
  6. Das, D. K., Maulik, N. and Moraru, I. I. (1995) Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J. Mol. Cell. Cardiol. 27, 181-193 https://doi.org/10.1016/S0022-2828(08)80017-X
  7. Fujimura, M., Morita-Fujimura, Y., Noshita, N., Sugawara, T., Kawase, M. and Chan, P. H. (2000) The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J. Neurosci. 20, 2817-2824
  8. Garnier, P., Demougeot, C., Bertrand, N., Prigent-Tessier, A., Marie, C. and Beley, A. (2001) Stress response to hypoxia in gerbil brain: HO-1 and Mn SOD expression and glial activation. Brain Res. 893, 301-309 https://doi.org/10.1016/S0006-8993(01)02009-1
  9. Gill, R. R., Gbur, C. J., Jr., Fisher, B. J., Hess, M. L., Fowler, A. A. 3rd, Kukreja, R. C. and Sholley, M. M. (1998) Heat shock provides delayed protection against oxidative injury in cultured human umbilical vein endothelial cells. J. Mol. Cell. Cardiol. 30, 2739-2749 https://doi.org/10.1006/jmcc.1998.0837
  10. Halliwell, B. and Gutteridge, J. M. C. (1999) Antioxidant defenses; in Free Radicals in Biology and Medicine, pp. 105- 244, Oxford Univ. Press, Oxford, UK
  11. Kamii, H., Kinouchi, H., Sharp, F. R., Koistinaho, J., Epstein, C. J. and Chan, P. H. (1994) Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn- superoxide dismutase. J. Cereb. Blood Flow Metab. 14, 478-486 https://doi.org/10.1038/jcbfm.1994.59
  12. Karmazyn, M., Mailer, K. and Currie, R. W. (1990) Acquisition and decay of heat-shock-enhanced postischemic ventricular recovery. Am. J. Physiol. 259, 424-431
  13. Kondo, T., Murakami, K., Honkaniemi, J., Sharp, F. R., Epstein, C. J. and Chan, P. H. (1996) Expression of hsp70 mRNA is induced in the brain of transgenic mice overexpressing human CuZn-superoxide dismutase following transient global cerebral ischemia. Brain Res. 737, 321-326 https://doi.org/10.1016/0006-8993(96)00949-3
  14. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680- 685 https://doi.org/10.1038/227680a0
  15. Lee, H. Y., Eum, W. S., Kim, D. W., Lee, B. R., Yoon, C. S., Jang, S. H., Choi, H. S., Choi, S. H., Baek, N. I., Kang, T. C., Won, M. H., Cho, S. W., Lee, K. S., Park, J. and Choi, S. Y. (2003) Isolation and identification of an antioxidant enzyme catalse stimulatory compound from Garnoderma Iucidum. J. Biochem. Mol. Biol. 36, 450-455 https://doi.org/10.5483/BMBRep.2003.36.5.450
  16. Lee, S. H., Kim, M., Yoon, B. W., Kim, Y. J., Ma, S. J., Roh, J. K., Lee, J. S. and Seo, J. S. (2001) Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32, 2905-2912 https://doi.org/10.1161/hs1201.099604
  17. Liu, X., Engelamn, R. M., Moraru, I. I., Rousou, J. A., Flack, J. E. 3rd., Daeton, D. W., Maulik, N. and Das, D. K. (1992) Heat shock: a new approach for myocardial preservation in cardiac surgery. Circulation 86, 358-363
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. T. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  19. Misura, H. P. and Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170-3175
  20. Ozdener, F., Kunapuli, S. P. and Daniel, J. L. (2002) Expression of enzymatically-active phospholipase Ca2 in E. coli. J. Biol. Chem. 35, 508-512
  21. Papadopoulos, M. C., Sun, X. Y., Cao, J., Mivechi, N. F. and Giffard, R. G. (1996) Over-expression of HSP-70 protects astrocytes from combined oxygen-glucose deprivation. Neuroreport 131, 429-432
  22. Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann, W., Weinstein, P. R. and Sharp, F. R. (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann. Neurol. 47, 782-791 https://doi.org/10.1002/1531-8249(200006)47:6<782::AID-ANA11>3.0.CO;2-3
  23. Roy, D., Pathak, D. N. and Singh, R. (1984) Effects of chlorpromazine on the activities of antioxidant enzymes and lipid peroxidation in the various regions of aging rat brain. J. Neurochem. 42, 628-633 https://doi.org/10.1111/j.1471-4159.1984.tb02728.x
  24. Sato, K., Saito, H. and Matsuki N. (1996) HSP 70 is essential to the neuroprotective effect of heat- shock. Brain Res. 470, 117- 123 https://doi.org/10.1016/S0006-8993(96)00846-3
  25. Sugawara, T., Noshita, N., Lewen, A., Gasche, Y., Ferrand-Drake, M., Fujimura, M., Morita-Fujimura, Y. and Chan, P. H. (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22, 209-217
  26. Tappel, A. L. (1978) Glutathione peroxidase and hydroperoxides. Methods Enzymol. 52, 506-513 https://doi.org/10.1016/S0076-6879(78)52055-7
  27. Yamashita, N., Hoshida, S., Nishida, M., Igarashi, J., Taniguchi, N., Tada, M., Kuzuya, T. and Hori, M. (1997) Heat shockinduced manganese superoxide dismutase enhances the tolerance of cardiac myocytes to hypoxia-reoxygenation injury. J. Mol. Cell Cardiol. 29, 1805-1813 https://doi.org/10.1006/jmcc.1997.0415
  28. Yenari, M. A., Giffard, R. G., Sapolsky, R. M. and Steinberg, G. K. (1999) The neuroprotective potential of heat shock protein 70 (HSP70). Mol. Med. Today. 5, 525-531 https://doi.org/10.1016/S1357-4310(99)01599-3
  29. Yoo, H. Y., Chang, M. S. and Rho, H. M. (1999) The activation of the rat copper/zinc superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide-responsive element and by paraquat and heat shock through the same heat shock element. J. Biol. Chem. 274, 23887-23892 https://doi.org/10.1074/jbc.274.34.23887
  30. Yun, Y. S. and Lee, Y. N. (2003) Production of superoxide dismutase by Deinococcus radiophilus. J. Biochem. Mol. Biol. 36, 282-287 https://doi.org/10.5483/BMBRep.2003.36.3.282

Cited by

  1. A melon pulp concentrate rich in superoxide dismutase reduces stress proteins along the gastrointestinal tract of pigs vol.27, pp.3, 2011, https://doi.org/10.1016/j.nut.2010.02.005
  2. Heat-shock response protects peripheral blood mononuclear cells (PBMCs) from hydrogen peroxide-induced mitochondrial disturbance vol.14, pp.2, 2009, https://doi.org/10.1007/s12192-008-0075-8
  3. Pre-Exercise Protective Effects Against Renal Ischemic Reperfusion Injury in Hsp 70.1 Knockout Mice vol.20, pp.4, 2010, https://doi.org/10.5352/JLS.2010.20.4.555
  4. Thiamine deficiency induces oxidative stress in brain mitochondria of Mus musculus vol.69, pp.3, 2013, https://doi.org/10.1007/s13105-013-0242-y
  5. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells vol.41, pp.2, 2006, https://doi.org/10.1016/j.freeradbiomed.2006.04.018
  6. Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria vol.1832, pp.12, 2013, https://doi.org/10.1016/j.bbadis.2013.07.010
  7. Mitochondrial membrane permeabilization in neuronal injury vol.10, pp.7, 2009, https://doi.org/10.1038/nrn2665
  8. Maternal exercise reduces hyperthermia-induced apoptosis in developing mouse brain vol.27, pp.5, 2011, https://doi.org/10.3109/02656736.2011.569967
  9. Domain Mapping of Heat Shock Protein 70 Reveals That Glutamic Acid 446 and Arginine 447 Are Critical for Regulating Superoxide Dismutase 2 Function vol.292, pp.6, 2017, https://doi.org/10.1074/jbc.M116.756122
  10. Saikosaponin-D Attenuates Heat Stress-Induced Oxidative Damage in LLC-PK1 Cells by Increasing the Expression of Anti-Oxidant Enzymes and HSP72 vol.42, pp.05, 2014, https://doi.org/10.1142/S0192415X14500797
  11. Studies on quantitative trait loci related to superoxide dismutase in mirror carp (Cyprinus carpioL.) vol.44, pp.12, 2013, https://doi.org/10.1111/j.1365-2109.2012.03191.x
  12. Wen-pi-tang-Hab-Wu-ling-san attenuates kidney ischemia/reperfusion injury in mice vol.112, pp.2, 2007, https://doi.org/10.1016/j.jep.2007.03.015
  13. Stressed Stem Cells: Temperature Response in Aged Mesenchymal Stem Cells vol.15, pp.4, 2006, https://doi.org/10.1089/scd.2006.15.478
  14. Modulation of rat cerebellum oxidative status by prolonged red wine consumption vol.13, pp.3-4, 2008, https://doi.org/10.1111/j.1369-1600.2008.00103.x
  15. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies vol.167, pp.4, 2012, https://doi.org/10.1111/j.1476-5381.2012.02025.x
  16. Acute hot water immersion is protective against impaired vascular function following forearm ischemia-reperfusion in young healthy humans vol.311, pp.6, 2016, https://doi.org/10.1152/ajpregu.00301.2016