Efficient Derivation of New Human Embryonic Stem Cell Lines

  • Kim, Sun Jong (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital, Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Lee, Jeoung Eun (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Park, Jong Hyuk (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Lee, Jung Bok (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital, Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Kim, Jin Mee (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Yoon, Byung Sun (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital, Animal Resource Research Center, Department of Animal Science, Konkuk University) ;
  • Song, Ji Min (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Roh, Sung Il (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Kim, Chul Geun (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Yoon, Hyun Soo (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital)
  • Received : 2004.08.18
  • Accepted : 2004.10.11
  • Published : 2005.02.28

Abstract

Human embryonic stem (hES) cells, unlike most cells derived from adult or fetal human tissues, represent a potentially unlimited source of various cell types for basic clinical research. To meet the increased demand for characterized hES cell lines, we established and characterized nine new lines obtained from frozen-thawed pronucleus-stage embryos. In addition, we improved the derivation efficiency from inner cell masses (to 47.4%) and optimized culture conditions for undifferentiated hES cells. After these cell lines had been maintained for over a year in vitro, they were characterized comprehensively for expression of markers of undifferentiated hES cells, karyotype, and in vitro/in vivo differentiation capacity. All of the cell lines were pluripotent, and one cell line was trisomic for chromosome 3. Improved culture techniques for hES cells should make them a good source for diverse applications in regenerative medicine, but further investigation is needed of their basic biology.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Amit, M. and Itskovitz-Eldor, J. (2002) Derivation and spontaneous differentiation of human embryonic stem cells. J. Anat. 200, 225-232 https://doi.org/10.1046/j.1469-7580.2002.00032.x
  2. Amit, M., Margulets, V., Segev, H., Shariki, K., Laevsky, I., et al. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod. 68, 2150-2156 https://doi.org/10.1095/biolreprod.102.012583
  3. Ben-Shushan, E., Thompson, J. R., Gudas, L. J., and Bergman, Y. (1998) Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol. Cell Biol. 18, 1866-1878
  4. Bongso, A., Fong, C. Y., Ng, S. C., and Ratnam, S. (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum. Reprod. 9, 2110-2117
  5. Brivanlou, A. H., Gage, F. H., Jaenisch, R., Jessell, T., Melton, D., et al. (2003) Stem cells: setting standards for human embryonic stem cells. Science 300, 913-916 https://doi.org/10.1126/science.1082940
  6. Carpenter, M. K., Roser, E., and Rao, M. S. (2003) Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79-88 https://doi.org/10.1089/153623003321512193
  7. Cheng, L., Hammond, H., Ye, Z., Zhan, X., and Dravid, G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21, 131-142 https://doi.org/10.1634/stemcells.21-2-131
  8. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353-1356 https://doi.org/10.1056/NEJMsr040330
  9. Draper, J. S., Pigott, C., Thomson, J. A., and Andrews, P. W. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200, 249-258 https://doi.org/10.1046/j.1469-7580.2002.00030.x
  10. Derhaag, J. G., Coonen, E., Bras, M., Bergers Janssen, J. M., Ignoul-Vanvuchelen, R., et al. (2003) Chromosomally abnormal cells are not selected for the extra-embryonic compartment of the human preimplantation embryo at the blastocyst stage. Hum. Reprod. 18, 2565-2574 https://doi.org/10.1093/humrep/deg485
  11. Draper, J. S., Smith, K., Gokhale, P., Moore, H. D., Maltby, E., et al. (2003) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53-54 https://doi.org/10.1038/nbt922
  12. Evans, M. J., Kaufman, M., Gardner, D. K., Lane, M., and Schoolcraft, W. B. (2000) Establishment in culture of pluripotential stem cells from culture and transfer of viable blastocysts: a feasible proposition for human IVF. Hum. Reprod. 15, 9-23
  13. Gardner, R. L. (2002) Stem cells: potency, plasticity and public perception. J. Anat. 200, 277-282 https://doi.org/10.1046/j.1469-7580.2002.00029.x
  14. Gardner, D. K., Rodriegez-Martinez, H., and Lane, M. (1999) Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum. Reprod. 14, 2575-2580 https://doi.org/10.1093/humrep/14.10.2575
  15. Stem Cells v.20 Preimplantation human embryos and embryonic stem cells show comparable expression of stagespecific embryonic antigens Henderson, J.K.;Draper, J.S.;Baillie, H.S.;Fishel, S.;Thomson, J.A.(et al.)
  16. Henderson, J. K., Draper, J. S., Baillie, H. S., Fishel, S., Thomson, J. A., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stagespecific embryonic antigens. Stem Cells 20, 329-337 https://doi.org/10.1634/stemcells.20-4-329
  17. Hwang, W. S., Ryu, Y. J., Park, J. H., Park, E. S., Lee, E. G., et al. (2004) Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocysts. Science 303, 1669-1674 https://doi.org/10.1126/science.1094515
  18. Hovatta, O., Mikkola, M., Gertow, K., Strberg, A., Inzunza, J., et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 8, 1404-1409
  19. Hsu, L. Y., Yu, M. T., Neu, R. T., Van Dyke, D. L., Benn, P. A., et al. (1997) Rare trisomy mosaicism diagnosed in amnimcytes, invovlving an autosome other than chrosomes13, 18, 20, and 21 : karyotype/phenotype correlations. Prenatal Diagnosis 17, 201-242 https://doi.org/10.1002/(SICI)1097-0223(199703)17:3<201::AID-PD56>3.0.CO;2-H
  20. Kawase, E., Suemori, H., Takahashi, N., Okazaki, K., Hashimoto, K., et al. (1994) Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int. J. Dev. Biol. 38, 385-390
  21. Lanzendorf, S. E., Boyd, C. A., Wright, D. L., Muasher, S., Oehninger, S., et al. (2001) Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines. Fertil. Steril. 76, 132-137 https://doi.org/10.1016/S0015-0282(01)01825-8
  22. Longo, L., Bygrave, A., Grosveld, F. G., and Pandolfi, P. P. (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. 6, 321-328 https://doi.org/10.1023/A:1018418914106
  23. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouseembryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634-7638
  24. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642 https://doi.org/10.1016/S0092-8674(03)00393-3
  25. Nico, H., Mikael, C. O., Englund, C. S., Dahl, U., Tonning, A., et al. (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22, 367-376 https://doi.org/10.1634/stemcells.22-3-367
  26. Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372-376 https://doi.org/10.1038/74199
  27. Park, J. H., Kim, S. J., Oh, E. J., Moon, S. Y., Roh, S. I., et al. (2003) Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol. Reprod. 69, 2007-2014 https://doi.org/10.1095/biolreprod.103.017467
  28. Park, J. H., Kim, S. J., Lee, J. E., Song, J. M., Kim, C. G., et al. (2004) Establishment of a human embryonic germ cell line and comparison of its characteristics to those of mouse and human embryonic stem cells. Mol. Cells 17, 309-315
  29. Piedrahita, J. A., Anderson, G. B., and BonDurant, R. H. (1990) On the isolation of embryonic stem (ES) cells: comparative behavior of murine, porcine, and ovine embryos. Theriogenology 34, 879-901 https://doi.org/10.1016/0093-691X(90)90559-C
  30. Prelle, K., Zink, N., and Wolf, E. (2002) Pluripotent stem cells-Model of embryonic development, tool for gene targeting,and basis of cell therapy. Anat. Histol. Embryol. 31, 169-186 https://doi.org/10.1046/j.1439-0264.2002.00388.x
  31. Reubinoff, B. E., Pera, M., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399-404 https://doi.org/10.1038/74447
  32. Richards, M., Fong, C. Y., Chan, W. K., Wong, P. C., and Bongso, A. (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933-936 https://doi.org/10.1038/nbt726
  33. Richards, M., Tan, S., Fong, C. Y., Biswas, A., Chan, W. K., et al. (2003) Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21, 546-556 https://doi.org/10.1634/stemcells.21-5-546
  34. Robertson, E. J. (1987) Embryo-derived stem cell lines; in Teratocarcinomas and Embryonic Stem Cells: a Practical Approach, Robertson, E. J. (ed.), pp. 71-112, Oxford: IRL Press
  35. Rogers, M. B., Hosler, B. A., and Gudas, L. J. (1991) Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development 113, 815-824
  36. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., and Benvenisty, N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11307-11312
  37. Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., et al. (1998) Derivation of pluripotent stem cells from cultured huma n primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13726-13731
  38. Solter, D. and Knowles, B. B. (1975) Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099-5102
  39. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., et al. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844-7844
  40. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  41. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., et al. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotech. 19, 971-974 https://doi.org/10.1038/nbt1001-971