고환 특이적으로 발현되는 탈유비퀴틴효소 HIDE와 HSP90의 상호작용

HIDE, a Testis Specific Deubiquitinating Enzyme, Interacts with HSP90

  • 성민우 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소) ;
  • 김명선 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소) ;
  • 김용수 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소) ;
  • 이숙환 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소) ;
  • 이혜진 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소) ;
  • 차광열 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소) ;
  • 백광현 (포천중문 의과대학교 생명과학전문대학원, 세포유전자치료연구소, 차병원 여성의학연구소)
  • Seong, Minu (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital) ;
  • Kim, Myung-Sun (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital) ;
  • Kim, Yong-Soo (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital) ;
  • Lee, Sook-Hwan (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital) ;
  • Lee, Hey-Jin (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital) ;
  • Cha, Kwang Yul (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital) ;
  • Baek, Kwang-Hyun (Graduate School of Life Science and Biotechnology, Cell and Gene Therapy Research Institute, Pochon CHA University, Infertility Medical Center, CHA General Hospital)
  • 발행 : 2005.09.30

초록

연구목적: 본 연구는 아직 그 기능이 파악되지 않은 탈유비퀴틴효소 중 하나인 HIDE에 대한 기본적인 생화학적 특징과 고환에서의 발현 양상을 파악하고 있다. 연구재료 및 방법: 인간의 HIDE 유전자를 클로닝하여 효소활성이 있는지 세포 외 실험을 통해 확인하였고, 아미노산 서열을 분석하여 진화상 보존된 부분을 찾아 그 기능을 파악한 다음 HSP90과의 상호작용을 공동면역침전반응으로 확인하였다. HIDE의 조직별 발현양상을 파악하기 위해서 인간과 쥐의 RNA 블롯과 쥐의 단백질 블롯을 이용하여 각각 노던 블롯팅과 웨스턴 블롯팅을 수행하여 고환에서 많이 발현된다는 것을 알았고 이 사실을 바탕으로 쥐의 고환을 절개하여 면역조직화학반응으로써 고환 내의 HIDE 단백질의 발현양상을 파악하였다. 결 과: HIDE는 세포 외에서 유비퀴틴 잔기를 제거하는 탈유비퀴틴 활성이 있으나 세포 내에서 전체적인 유비퀴틴 복합체를 줄여주는 효과는 없었다. HIDE는 HSP90이라는 분자 샤페론과 상호작용한다. HIDE의 전사체는 고환에서 가장 많이 발현되며 다른 조직에서도 소량 발현된다. HIDE의 단백질은 웨스턴 블롯상에서 고환에서만 확인되었다. 고환 내에서의 HIDE의 발현양상은 왕성한 감수분열을 하는 정모세포에서 높았으며 지지세포나 정조세포에는 발현되지 않았다. 결 론: HIDE는 분자 샤페론 HSP90과 상호작용하며 고환 내의 감수분열 중인 세포에서 많이 발현되는 것으로 보아 감수분열이나 정자형성에 관여하는 것으로 보인다.

키워드

과제정보

연구 과제 주관 기관 : 보건복지부

참고문헌

  1. Wing SS. Deubiquitinating enzymes-the importance of driving in reversealong the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 2003; 35: 590-605 https://doi.org/10.1016/S1357-2725(02)00392-8
  2. Johnston SC, Riddle SM, Cohen RE, Hill CP. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J 1999; 18:3877-87 https://doi.org/10.1093/emboj/18.14.3877
  3. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signaling. Nature 2004;430: 694-9 https://doi.org/10.1038/nature02794
  4. Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 2005; 17: 331-9 https://doi.org/10.1016/j.molcel.2005.01.008
  5. Schmitz C, Kinner A, Kolling R. The deubiquitinating enzyme Ubp1 affects sorting of the ATP-binding cassette-transporter Ste6 in the endocytic pathway. Mol Biol Cell 2005; 16: 1319-29. https://doi.org/10.1091/mbc.E04-05-0425
  6. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002; 416: 648-53 https://doi.org/10.1038/nature737
  7. Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool. J Cell Biol 2001; 154: 267-73 https://doi.org/10.1083/jcb.200104079
  8. Nollen EA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J Cell Sci 2002; 115: 2809-16
  9. Young JC, Barral JM, Hartl FU. More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 2003; 28: 541-7 https://doi.org/10.1016/j.tibs.2003.08.009
  10. Murata S, Chiba T, Tanaka K. CHIP: a qualitycontrol E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 2003; 35: 572-8 https://doi.org/10.1016/S1357-2725(02)00394-1
  11. Blank M, Mandel M, Keisari Y, Meruelo D, Lavie G. Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin. Cancer Res 2003; 63: 8241-7
  12. Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 2004; 10: 47-51 https://doi.org/10.1016/j.molmed.2003.12.005
  13. Brinker A, Scheufler C, Von Der Mulbe F, Fleckenstein B, Herrmann C, Jung G, et al. Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70XHopXHsp90 complexes. J Bioi Chem 2002; 277: 19265-75 https://doi.org/10.1074/jbc.M109002200
  14. Garcia-Ranea JA, Mirey G, Camonis J, Valencia A. p23 and HSP90/$alpha$-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 2002; 529: 162-7 https://doi.org/10.1016/S0014-5793(02)03321-5
  15. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 1998; 143: 901-10 https://doi.org/10.1083/jcb.143.4.901
  16. Lingelbach LB, Kaplan KB. The interaction between Sgtlp and Skplp is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol Cell Biol 2004; 24: 8938-50 https://doi.org/10.1128/MCB.24.20.8938-8950.2004
  17. Bansal PK, Abdulle R, Kitagawa K. Sgtl associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol 2004; 24: 8069-79 https://doi.org/10.1128/MCB.24.18.8069-8079.2004
  18. Takahashi A, Casais C, Ichimura K, Shirasu K. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 2003; 100: 11777-11782
  19. Wu J, Luo S, Jiang H, Li H. Mammalian CHORDcontaining protein 1 is a novel heat shock protein 90-interacting protein. FEBS Lett 2005; 579: 421-6 https://doi.org/10.1016/j.febslet.2004.12.005
  20. Ohsako S, Bunick D, Hayashi Y. Immunocytochemical observation of the 90 KD heat shock protein (HSP90): high expression in primordial and premeiotic germ cells of male and female rat gonads. J Histochem Cytochem 1995; 43: 67-76 https://doi.org/10.1177/43.1.7822767
  21. Gruppi CM, Zakeri ZF, Wolgemuth DJ. Stage and lineage-regulated expressioin of two hsp90 transcripts during mouse germ cell differentiation and embryogenesis. Mol Reprod Dev 1991; 28: 209-17 https://doi.org/10.1002/mrd.1080280302
  22. Zhang YQ, Matthies HJG, Mancuso J, Andrews HK, Woodruff III E, Friedman D, et al. The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis. Dev Biol 2004; 270: 290-307 https://doi.org/10.1016/j.ydbio.2004.02.010
  23. Sananes N, Baulieu EE, Goascogne CL. Stagespecific expression of the immunophilin FKBP59 messenger ribonucleic acid and protein during differentiation of male germ cells in rabbits and rats. Biol Reprod 1998; 58: 353-60 https://doi.org/10.1095/biolreprod58.2.353
  24. Sarge KD, Cullen KE. Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci 1997; 53: 191-7 https://doi.org/10.1007/PL00000591
  25. Baek KH, Kim MS, Kim YS, Shin JM, Choi HK. DUB-lA, a novel subfamily member of deubiquitinating enzyme, is polyubiquitinated and cytokine inducible in B-Iymphocytes, J Biol Chem 2004; 279: 2368-76 https://doi.org/10.1074/jbc.M304774200
  26. Nagase T, Ishikawa Kl, Suyama M, Kikuno R, Hirosawa M, Miyajima N, et al. Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain, which code for large proteins in vitro. DNA Res 1998; 5: 355-64 https://doi.org/10.1093/dnares/5.6.355
  27. Zhu Y, Carroll M, Papa FR, Hochstrasser M, D'Andrea AD. DUB-l, a deubiquitinating enzyme with growth-suppressing activity. Proc Natl Acad Sci USA 1996; 93: 3275-3279
  28. Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S, et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has deubiquitinating activity. Biochem J 2004; 378: 727-34 https://doi.org/10.1042/BJ20031377
  29. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801-5 https://doi.org/10.1038/nature01802
  30. Sun C, Skaletsky H, Birren B, Devon K, Tang Z, Silber S, et al. An-azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 1999; 23: 429-32 https://doi.org/10.1038/70539