Spatiotemporal Changes of Temperature and Humidity in Lentinula edodes Cultivation Sheds

표고시설재배사내 시·공간적인 온·습도변화

  • Ryu, Sung Ryul (School of Forest Resources, Chungbuk National University) ;
  • Koo, Chang Duck (School of Forest Resources, Chungbuk National University)
  • 류성렬 (충북대학교 농과대학 산림과학부) ;
  • 구창덕 (충북대학교 농과대학 산림과학부)
  • Received : 2005.09.01
  • Accepted : 2005.10.07
  • Published : 2005.12.31

Abstract

To understand spatiotemporal changes of temperature and humidity in Lentimula edodes cultivation sheds, temperature, relative humidity were measured with HOBO H8 series sensors in log cultivation sheds and sawdust cultivation sheds. The results obtained from October in 2003 to October in 2004 were as follows; 1. Horizontal temperature changes were smaller at center of cultivation shed inside than comer of cultivation shed inside, while relative humidity changes were greater about 3% at center of cultivation shed inside than corner of cultivation shed inside. 2. Vertical temperature changes showed that the temperature was higher at above than at below when the temperature rises, while the temperature was lower at above than at below when the temperature falls. Thus close to soil surface temperature showed a little fluctuation. Vertical relative humidity changes showed that the relative humidity was lower at above than at below when the temperature rises, while the relative humidity was higher at above than at below when the temperature falls. After all temperature and relative humidity was the opposite in cultivation shed. 3. It's showed in log cultivation shed that the minimum temperature was a subzero temperature until the end of April, while the minimum temperature did above zero after the beginning of the May. Besides a winter was the greatest at daily temperature range during the four season, about $30^{\circ}C$. On the other hand the minimum relative humidity was less than 20% at April, May and June but more than 40% after May.

표고재배사내 시공간적인 온습도 변화를 이해하기 위하여 표고시설재배사내 HOBO H8시리즈 센서를 이용하여 온 습도를 측정하였다. 2003년 10월부터 2004년 10월 까지 얻어진 결과는 다음과 같다. 1. 수평적 온도변화는 재배사내부의 가장자리보다 중앙부분이 더 작았다. 한편 상대습도변화 는 재배사내부의 가장자리보다 중앙부분에서 3%정도가 크게 나타났다. 2. 수직적 온도변화는 온도가 올라갈 때 하단 보다 상단에서 컷으며, 온도가 떨어질 때 하단 보다 상단에서 작았다. 그래서 토양표면에 가까울수록 온도는 작은 변동폭을 보였다. 수직적 상대습도변화는 온도가 올라갈 때 하단보다 상단에서 작았으며, 온도가 떨어질 때 는 하단보다 상단에서 컷다. 결국 온 습도는 재배사내에서 반대경향으로 나타났다. 3. 원목재배사내에서 최저온도는 4월말까지 영하의 온도로 유지되었으며, 최저온도는 5월초 에 비로서 영상온도를 회복하였다. 한편 계절별로 볼때 겨울이 온도변화가 가장 심했으며, 일중 $30^{\circ}C$를 나타냈다. 반면 최저상대습도로서 4월, 5월, 6월에 20%이하를 보였으며, 그 이 후 40%이상을 회복하였다.

Keywords

Acknowledgement

Grant : 표고재배사내 적정 수분-온도관리모델개발

References

  1. 안승정지. 1998. 가을철 버섯나무의 물뿌리기 관리. 임산버섯 51: 7-9
  2. 이지열. 1991. 균학 버섯재배. 대광문화사
  3. 신철우, 차동열, 전창성 외. 1992. 환경조절 재배사를 이용한 느타리 버섯재배 농가실증시험. 농업기술연구소 연구보고서 pp. 831-836
  4. 석정수지. 1998. 표고통나무재배에 있어서의 몇가지 재배특성. 임산버섯 45: 13-15
  5. 이태수, 윤갑희, 박원철, 김재성, 이지열. 1998. 표고재배 기술141호. 임업연구원 pp. 13-29
  6. 윤갑희. 표고 톱밥재배의 기술과 재배시스템(II). 1999. 임산버섯. pp. 11-15
  7. 이태수. 1999. 표고하우스시설재배. 버섯 3권(1). 한국버섯연구회. pp. 173-211
  8. 한국임산버섯생산자단체연협회. 1998. 표고재배시설 모델개발. 산림청. 184pp.
  9. 원철희. 1999. 버섯 성공적인 경영기법. 농민신문사. pp 95-189
  10. 이태수. 1999. 표고에 대한 새로운 기술개발 연구. pp. 19-36
  11. 천야방부. 1999. 장마철 표고 버섯나무의 버섯발생환경. p. 18
  12. 한국임산버섯생산자단체연합회. 1999 표고재배시설모델 개발 산림청 323pp
  13. 암기탁야. 2000. 물관리에 의한 버섯나무 만들기와 버섯 생산(I). 임산버섯 61: 1-2
  14. 이태수, 윤갑희, 박원철, 김재성, 이지열. 2000. 새로운 표고재배기술. 임업연구원389pp.
  15. 이태수. 2000. 재배환경과 시설. 버섯정보신문사. pp. 135-156
  16. 이태수. 2000. 표고원목재배. 버섯 4권(2). 한국버섯연구회 pp. 121-160
  17. 임업연구원. 2000. 표고 병해충방제 및 재배시설 모델 개발. 산림청. 90pp
  18. 차동열. 2000. 느타리버섯 재배환경과 안전생산 pp. 39-59
  19. 채정기. 2000 표고재배의 문제점과 대책. 버섯 4권(1) 한국버섯연구회. pp. 177-195
  20. 박상돈. 2001. 표고버섯 시설재배. 월간버섯 11: 75-94
  21. 헌준호. 2001. 표고재배기술. 한국버섯연구회. pp. 185-198
  22. 최형기. 2002. 고품질 . 다수확을 위한 느타리버섯 재배 기술. (주)광미실업. 88pp.
  23. 김동환. 2003. 표고버섯 협업생산과 공동출하. 전국표고 버섯생산자연합회. pp. 23-43
  24. 윤갑희. 2003. 표고톱밥배지의 자연배양. 임산버섯 재배의 이론과 실제. pp. 21-37
  25. Schroeder, G.M. and Schisler, L.C. 1981. Effect of supplementation, substrate moisture and casing moisture on size, yield, and dry weight of mushrooms. Mushroom Sci. 11: 511-521
  26. Kalberer, P.P. 1985. Influence of the depth of the casing layer on the awater extraction from casing soil and substrate by the sporophores, on the yield and on the dry matter content of the fruit bodies of the first three flushes of the cultivated mushroom Agaricus bisporus. Sci Hort. 27: 33-43 https://doi.org/10.1016/0304-4238(85)90052-4
  27. Kalberer, P.P. 1987. Water potential of casing and substrate and osmotic potentials of fruit bodies of Agaricus bisporus. Sci Hort. 32: 175-182 https://doi.org/10.1016/0304-4238(87)90084-7
  28. Kalberer, P.P. 1987. Water relations of the mushroom culture (Agaricus bisporus):Influences on the crop yield and on dry matter content of the fruit bodies. In:Science and Cultivation of Edible Fungi, Ed. M.J. Maher. A.A. Balkema. Rotterdam. 1: 269-274
  29. Magan. M. 1997. Fungi in Extreme Environments. The Mycota 4. pp. 99-113
  30. Mushworld. 2004. Oyster Mushroom Cultivation. Mushroom Grower'Handbook 1. pp. 298
  31. Beyer, D.M., Lomax, K.M., Beelman, R.B. 2000. The use of time domain reflectometry to monitor water relations in mushroom substrate and casing. 15th Science and Cultivation of Edible Fungi. pp. 341-348
  32. Beecher. T.M. & Magan. N. 2000. Dynamics of water translocation in freshly harvested and stored mushrooms of Agaricus bispours. pp. 733-739
  33. Nobel. R, Rama. T, Dobrovin-Pennington. A. 2000. Continuous measurement of casing soil and compost water availability in relation to mushroom yield and quality. pp. 433-439