Status for the Technology of Hydrogen Production from Natural Gas

천연가스를 이용한 수소 제조 기술 현황

  • Bak, Young-Cheol (Department of Chemical Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Cho, Kwang-Ju (Department of Chemical Engineering, Engineering Research Institute, Gyeongsang National University)
  • 박영철 (경상대학교 화학공학과, 공학연구원) ;
  • 조광주 (경상대학교 화학공학과, 공학연구원)
  • Received : 2005.01.18
  • Accepted : 2005.04.01
  • Published : 2005.06.30

Abstract

Hydrogen energy will be considered one of the most important energy carries for the future not only as raw material of petroleum chemical industry but also as the fuel of the fuel cell. The hydrogen production based upon the water electrolysis system combined renewable energy or atomic power energy is being watched as long-term hydrogen sources. Hydrogen from fossil fuel, especially natural gas steam reforming, is the economical mass production method at this time. But the cost of $CO_2$ reduction is added in the economic analysis of hydrogen production processes. Therefore many different results are suggested from these analyses about old processes, and modified schemes are studying for the efficient development. In this review, status for the technology of hydrogen production from natural gas are summarized.

수소에너지는 기존의 석유화학공업의 원료로서 뿐만 아니라 연료전지와 연계하여 소요량이 급속히 증가할 것으로 예측된다. 장기적으로는 재생에너지를 사용한 물 전기분해, 원자력을 이용한 수소 제조가 주목받고 있지만, 안정된 기술이 확보되기까지는 화석연료를 사용한 수소 제조법이 대용량 수소 제조법 중 가장 경제적인 것으로 분석되고 있다. 현재 화석 연료 중 천연가스를 이용한 수증기 개질 수소 제조법이 상업적인 공정으로 채택되고 있으나 $CO_2$ 분리 처리 비용이 경제성 평가에 중요한 항목으로 부각되고 있다. 따라서 천연가스를 이용한 수소 제조에도 다양한 공정이 제안되고 있으므로 천연가스를 원료로 한 수소 제조 기술의 개발 현황을 살펴보았다.

Keywords

References

  1. Bak, Y. C., 'Status for the Technology of Hydrogen Production from Coals,' Energy R&D, 15(2), 191-201(1993)
  2. Son, J. E., 'Hydrogen & Fuel Cell Technology,' Korean Chem. Eng. Res., 42(1), 1-9(2004)
  3. Yun, Y. S., 'Hydrogen Production by Gasification Technologies,' Energy Engg. J., 13(1), 1-11(2004)
  4. Armor, J. N., 'The Multiple Roles for Catalysis in the Production of $H_{2}$,' Applied Catalysis, A: General, 176, 159-176(1999) https://doi.org/10.1016/S0926-860X(98)00244-0
  5. Tindall, B. and King, D., 'Comparative Analysis of Different Natural Gas Pyrolysis Methods,' Hydrocarbon Process, July, 69- 75(1994)
  6. Pena, M. A., Gomez, J. P. and Fierro, J. L. G., 'New Catalytic Routes for Syngas and Hydrogen Production,' Applied Catalysis, A: General, 144, 7-57(1996) https://doi.org/10.1016/0926-860X(96)00108-1
  7. Steinberg, M., 'Fossil Fuel Decarbonization Technology for Mitigating Global Warming,' International Journal of Hydrogen Energy, 24, 771-777(1999) https://doi.org/10.1016/S0360-3199(98)00128-1
  8. Scholz, W. H., 'Processes for Industrial Production of Hydrogen and Associated Environmental Effect,' Gas Sep. Purit., 7(3), 131-139(1993) https://doi.org/10.1016/0950-4214(93)80001-D
  9. Heinzel, A., Vogel, B. and Hübner, P., 'Reforming of Natural Gas-Hydrogen Generation for Small Scale Stationary Fuel Cell System,' J. Power Sources, 105, 202-207(2002) https://doi.org/10.1016/S0378-7753(01)00940-5
  10. Vogel, B., Schaumberg, G., Schuler, A. and Heinzel, A., 'Hydrogen Generation Technology for PEM Fuel Cells,' Abstracts of the 1998 Fuel Cell Semina, Palm Springs, 364-367(1998)
  11. Hufton, J. R., Mayorga, S. and Sircar, S., 'Sorption-Enhanced Reaction Process for Hydrogen Production,' AIChE J., 45(2), 248-256(1999) https://doi.org/10.1002/aic.690450205
  12. Waldron, W. E., Hufton, J. R. and Sircar, S., 'Production of Hydrogen by Cyclic Sorption Enhanced Reaction Process,' AIChE J., 47(6), 1477-1479(2001) https://doi.org/10.1002/aic.690470623
  13. Anand, M., Hufton, J. R., Mayorga, S., Nataraj, S., Sircar, S. and Gaffney, T. R., 'Sorption-Enhanced Reaction Process for Production of Hydrogen,' Proc. U. S. DOE Hydrogen Program. Rev., 1, 537-538(1996)
  14. Hufton, J. R., Mayorga, S., Gaffney, T. R., Nataraj, S., Rao, M. B. and Sircar, S., 'Sorption-Enhanced Reaction Process for Production of Hydrogen,' Proc. U. S. DOE Hydrogen Program. Rev., 2, 693- 694(1998)
  15. Bak, I. H., Choi, W. K., Nam, S. C., Jong, S. K., Park, J. H., Lee, K. H., Rhee, W. H., Joo, T. S., Lee, T. S., Cha, W. S. and Lee, D. K., Development of $CO_{2}$ Capture Process with Chemical Dry Sorbent for Pre-combustion Decarbonization. MOST Report MI- 0028-00-0005-01-A27-00-014-00, KIER-A26611, 96-230(2003)
  16. Bak, Y. C., Cho, K. J. and Kim. S. B., 'Reaction Characteristics of Calcium-Based Adsorbents for Bulk Separation of $CO_{2}$ in High-Temperature,' J. of KSEE, 25(5), 595-601(2003)
  17. Trimm, D. L., 'Catalysts for the Control of Coking During Steam Reforming,' Catalyst Today, 49, 3-10(1999) https://doi.org/10.1016/S0920-5861(98)00401-5
  18. Lee, J. K. and Park D., 'Hydrogen Production from Fluidized Bed Steam Reforming of Hydrocarbons,' Korean J. Chem. Eng., 15(6), 658-662(1998) https://doi.org/10.1007/BF02698994
  19. Moon, K. I., Kim, C. H., Choi, J. S., Lee, S. H., Kim, Y. G. and Lee, J. S., 'Carbon Dioxide Reforming of Methane over Nickel Based Catalysts II. Deposition of Cokes,' HWAHAK KONGHAK, 35(6), 890-894(1997)
  20. Moon, K. I., Kim, C. H., Choi, J. S., Lee, S. H., Kim, Y. G. and Lee, J. S., 'Carbon Dioxide Reforming of Methane over Nickel Based Catalysts I. Comparison with Steam Reforming,' HWAHAK KONGHAK, 35(6), 883-889(1997)
  21. Chang, J. S., Park, S. E., Roh, H. S. and Park, Y. K., 'Thermogravimetric Study on Reactivity of Carbon Dioxide and Methane over Supported Nickel Reforming Catalysts,' Bull. Korean Chem. Soc., 19(8), 809-812(1998)
  22. Osaki, T., Masuda, M. and Mori, T., 'Intermediate Hydrocarbon Species for the $CO_{2}-CH_{4}$ Reaction on Supported Ni Catalysts,' Cata. Lett., 29, 33-37(1994) https://doi.org/10.1007/BF00814249
  23. Parmon, V. N., 'Catalytic Technology for Energy Production and Recovery in the Future,' Catalysis Today, 35, 153-162(1997) https://doi.org/10.1016/S0920-5861(96)00142-3
  24. Wang, H. Y. and Ruckenstein, E., 'Partial Oxidation of Methane to Synthesis Gas over Alkaline Earth Metal Oxide Supported Cobalt Catalysts,' J. Catal., 199(2), 309-317(2001) https://doi.org/10.1006/jcat.2001.3190
  25. Hofstad, K. H., Hoebint, J. H. B. J., Holmen, A. and Marin, G. B., 'Partial Oxidation of Methane to Synthesis Gas Rhodium Catalysts,' Catal. Today, 40(2-3), 157-170(1998) https://doi.org/10.1016/S0920-5861(98)00004-2
  26. Matsui, N., Nakagawa, K., Ikenaga, N. and Suzuki, T., 'Reactivity of Carbon Species formed on Supported Noble Metal Catalysts in Methane Conversion Reaction,' J. Catal., 194(1), 115- 121(2000) https://doi.org/10.1006/jcat.2000.2920
  27. Kim, S. B., Shin, K. S., Park, E. S., Kwak, Y. C., Cheon, H. J. and Hahm, H. S., 'Partial Oxidation of Methane to Synthesis Gas over Ni Catalysts,' HWAHAK KONGHAK, 41(1), 20-25(2003)
  28. Jacobs, L., Lednor, P., Limahelu, A., Schoonebeek, R. and Vonkeman, K., 'Process for the Catalytic Partial Oxidation of Hydrocarbons,' U.S. patent 5510056(1996)
  29. Lago, R., Bini, G., Pena, M. and Fierro, J., 'Partial Oxidation of Methane to Synthesis Gas using $LnCoO_{3}$ Pervskites as Catalyst Precursors,' J. Catal., 167, 198-209(1997) https://doi.org/10.1006/jcat.1997.1580
  30. Liu, Z. W., Jun, K. W., Roh, H. S., Park, S. E. and Oh, Y. S., 'Partial Oxidation of Methane over Nickel Catalyst Supported on Various Aluminas,' Korean J. Chem. Eng., 19(5), 735-741(2002) https://doi.org/10.1007/BF02706961
  31. Jun, J. H., Lee, S. J., Lee, S. H., Lee, T. J., Kong, S. J., Lim, T. H., Nam, S. W., Hong, S. A. and Yoon, K. J., 'Characterization of a Nickel-Strontium Phosphate Catalyst for Partial Oxidation of Methane,' Korean J. Chem. Eng., 20(5), 829-834(2003) https://doi.org/10.1007/BF02697283
  32. Jun, J. H., Jeong, K. S., Lee, T. J., Kong, S. J., Lim, T. H., Nam, S. W., Hong, S. A. and Yoon, K. J., 'Nickel-Calcium Phosphate/ Hydroxyapatite Catalysts for Partial Oxidation of Methane to Syngas: Effect of Composition,' Korean J. Chem. Eng., 21(1), 140-146(2004) https://doi.org/10.1007/BF02705392
  33. Liu, Z. W., Roh, H. S., Jun, K. W., Park, S. E. and Song, T. Y., 'Partial Oxidation of Methane over $Ni/Ce-ZrO_{2}/\theta-Al_{2}O_{3}$,' Korean J. Chem. Eng., 19(5), 742-748(2002) https://doi.org/10.1007/BF02706962
  34. Ji, Y., Li, W., Xu, H. and Chen, Y., 'Catalytic Partial Oxidation of Methane to Synthesis Gas over $Ni/\gamma-Al_{2}O_{3}$ Catalyst in a Fluidized- bed,' Appl. Catal. A: General, 213, 25-31(2001) https://doi.org/10.1016/S0926-860X(00)00887-5
  35. Mo, L., Zheng, X., Chen, Y. and Fei, J., 'Combination of $CO_{2}$ Reforming and Partial Oxidation of Methane over $Ni/Al_{2}O_{3}$ Catalysts using Fluidized Bed Reactor,' React. Kinet. Catal. Lett., 78(2), 233-242(2003) https://doi.org/10.1023/A:1022617407238
  36. Jing, Q., Lou, H., Fei, J., Hou, Z. and Zheng, X., 'Syngas Production from Reforming of Methane with $CO_{2}$ and $O_{2}$ over $Ni/SrO-SiO_{2}$ Catalysts in a Fluidized Bed Reactor,' International Journal of Hydrogen Energy, 29, 1245-1251(2004) https://doi.org/10.1016/j.ijhydene.2004.01.012
  37. Audus, H., Kaarstad, O. and Kowal, M., Proceeding of 11th World Hydrogen Energy Conference, Stuttgart, 525-534(1996)
  38. Donnet, J. B., Carbon Black, Marcel Dekker, New York 16- 18(1976)
  39. Popov, R. G., Shprilrain, E. E. and Zaytchenko, V. M., 'Natural Gas Pyrolysis in the Regenerative Gas Heater, Part I: Natural Gas Thermal Decomposition at a Hot Matrix in a Regenerative Gas Heater,' International Journal of Hydrogen Energy, 24, 327- 334(1999) https://doi.org/10.1016/S0360-3199(98)00034-2
  40. Park, J. K., Lee, Y. W., Lee, B. G., Lim, J. S., Choi, D. K. and Kim, D. C., 'Hydrogen and Carbon Black Production from Natural Gas Pyrolysis,' Theories and Application of Chem. Eng., 8(1), 1509(2002)
  41. Pohleny, J. B. and Scott, N. H., 'Method of Hydrogen Production by Catalytic Decomposition of a Gaseous Hydrogen Stream', U. S. Patent 3,284,161(1966)
  42. Pourier, M. G. and Sapundzhiev, C., 'Catalytic Decomposition of Natural Gas to Hydrogen for Fuel Cell Applications,' International Journal of Hydrogen Energy, 22(4), 429-433(1997) https://doi.org/10.1016/S0360-3199(96)00101-2
  43. Muradov, N., 'How to Produce Hydrogen from Fossil Fuels without $CO_{2}$ Emission,' International Journal of Hydrogen Energy, 18(3), 211-215(1993) https://doi.org/10.1016/0360-3199(93)90021-2
  44. Muradov, N., '$CO_{2}$-Free Production of Hydrogen by Catalytic Pyrolysis of Hydrocarbon Fuel,' Energy & Fuels, 12(1), 41-48 (1998) https://doi.org/10.1021/ef9701145
  45. Kim, M. H., Lee, E. K., Jun, J. H., Han, G. Y., Kong, S. J., Lee, B. K., Lee, T. J. and Yoon, K. J., 'Hydrogen Production by Catalytic Decomposition of Methane over Activated Carbon : Deactivation Study,' Korean J. Chem. Eng., 20(5), 835-839(2003) https://doi.org/10.1007/BF02697284
  46. Lynum, S., '$CO_{2}$-free Hydrogen from Hydrocarbons. The Kverner CB&H Process,' 5th Annual US Hydrogen Meeting, National Hydrogen Association(1994)
  47. Gaudermack, B. and Lynum, S., 'Hydrogen from Natural Gas without Release of $CO_{2}$ to the Atmosphere,' International Journal of Hydrogen Energy, 23(12), 1087-1093(1988) https://doi.org/10.1016/S0360-3199(98)00004-4
  48. Steinberg, M., 'The Carnol Process for $CO_{2}$ Mitigation from Power Plants and the Transportation Sector,' BNL 62835, Brookhaven National Laboratory, Upton, NY, December(1995)