Isolation of Xenopus FGF-8b and Comparison with FGF-8a

  • Shim, Sangwoo (Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Bae, Narina (Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Park, Sang Yoon (Department of Life Science, Sogang University) ;
  • Kim, Won-Sun (Department of Life Science, Sogang University) ;
  • Han, Jin-Kwan (Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Received : 2004.05.18
  • Accepted : 2005.02.21
  • Published : 2005.06.30

Abstract

The Xenopus FGF-8a and FGF-8b isoforms have been reported to be neural crest and neuronal inducers, respectively. However, cloning of Xenopus FGF-8b (XFGF-8b) has not been reported previously and the two isoforms do not seem to have been clearly distinguished in Xenopus experiments. Here, we describe the cloning and expression of XFGF-8b and compare the effects of the two isoforms. XFGF-8b has an 11 amino acid insert in its N-terminal region compared with XFGF-8a. Both isoforms are expressed in the anterior neural regions of the early embryo, and in the apical ectodermal ridge of limb buds and tips of growing digits in the larval stages. However, XFGF-8b is more abundant than XFGF-8a throughout early development. The two isoforms are also regulated in similar fashion by retinoic acid in early development. However, although both XFGF-8a and XFGF-8b induce ectopic neurogenesis, only XFGF-8a appears to be involved in neural crest induction.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Antoine, M., Daum, M., Kohl, R., Blecken, V., Close, M. J., et al. (2000) NH2-terminal cleavage of Xenopus fibroblast growth factor 3 is necessary for optimal biological activity and receptor binding. Cell Growth Differ. 11, 593-605
  2. Asada, M., Yoneda, A., Oda, Y., Ota, K., Ozawa, K., et al. (1999) Characterization of fibroblast growth factor-6 expressed by Chinese hamster ovary cells as a glycosylated mitogen for human vascular endothelial cells. Growth Factors 16, 293-303 https://doi.org/10.3109/08977199909069147
  3. Bellosta, P., Talarico, D., Rogers, D., and Basilico, C. (1993) Cleavage of K-FGF produces a truncated molecule with increased biological activity and receptor binding affinity. J. Cell Biol. 121, 705-713 https://doi.org/10.1083/jcb.121.3.705
  4. Blumberg, B., Mangelsdorf, D. J., Dyck, J. A., Bittner, D. A., Evans, R. M., et al. (1992) Multiple retinoid-responsive receptors in a single cell: families of retinoid “X” receptors and retinoic acid receptors in the Xenopus egg. Proc. Natl. Acad. Sci. USA 89, 2321-2325
  5. Bouwmeester, T., Kim, S., Sasai, Y., Lu, B., and De Robertis, E. M. (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595-601 https://doi.org/10.1038/382595a0
  6. Brondani, V. and Hamy, F. (2000) Retinoic acid switches differential expression of FGF8 isoforms in LNCaP cells. Biochem. Biophys. Res. Commun. 272, 98-103 https://doi.org/10.1006/bbrc.2000.2740
  7. Brondani, V., Klimkait, T., Egly, J. M., and Hamy, F. (2002) Promoter of FGF8 reveals a unique regulation by unliganded RARalpha. J. Mol. Biol. 319, 715-728 https://doi.org/10.1016/S0022-2836(02)00376-5
  8. Chae, J. H., Stein, G. H., and Lee, J. E. (2004) NeuroD: the predicted and the surprising. Mol. Cells 18, 271-288
  9. Chalmers, A. D., Welchman, D., and Papalopulu, N. (2002) Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Dev. Cell 2, 171-182 https://doi.org/10.1016/S1534-5807(02)00113-2
  10. Chi, C. L., Martinez, S., Wurst, W., and Martin, G. R. (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130, 2633-2644 https://doi.org/10.1242/dev.00487
  11. Christen, B. and Slack, M. W. (1997) FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol. 192, 455-466 https://doi.org/10.1006/dbio.1997.8732
  12. Crossley, P. H. and Martin, G. R. (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439-451
  13. Crossley, P. H., Minowada, G., MacArthur, C. A., and Martin, G. R. (1996a) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127-136 https://doi.org/10.1016/S0092-8674(00)80999-X
  14. Crossley, P. H., Martinez, S., and Martin, G. R. (1996b) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66-68 https://doi.org/10.1038/380066a0
  15. Duraisamy, Y., Slevin, M., Smith, N., Bailey, J., Zweit, J., et al. (2001) Effect of glycation on basic fibroblast growth factor induced angiogenesis and activation of associated signal transduction pathways in vascular endothelial cells: possible relevance to wound healing in diabetes. Angiogenesis 4, 277-288 https://doi.org/10.1023/A:1016068917266
  16. Furthauer, M., Thisse, C., and Thisse, B. (1997) A role for FGF- 8 in the dorsoventral patterning of the zebrafish gastrula. Development 124, 4253-4264
  17. Gemel, J., Gorry, M., Ehrlich, G. D., and MacArthur, C. A. (1996) Structure and sequence of human FGF8. Genomics 35, 253-257 https://doi.org/10.1006/geno.1996.0349
  18. Godsave, S. F., Isaacs, H. V., and Slack, J. M. (1988) Mesoderm- inducing factors: a small class of molecules. Development 102, 555-566
  19. Han, M. H., An, J. Y., and Kim, W. S. (2001) Expression patterns of Fgf-8b during development and limb generation of the axolotl. Dev. Dyn. 220, 40-48 https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1085>3.0.CO;2-8
  20. Hardcastle, Z., Chalmers, A. D., and Papalopulu, N. (2000) FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr. Biol. 10, 1511-1514 https://doi.org/10.1016/S0960-9822(00)00825-3
  21. Harland, R. M. (1991) In situ hybridization: an improved wholemount method for Xenopus embryos. Methods Cell. Biol. 36, 685-695 https://doi.org/10.1016/S0091-679X(08)60307-6
  22. Isaacs, H. V. (1997) New perspectives on the role on the fibroblast growth factor family in amphibian development. Cell. Mol. Life Sci. 53, 350-361 https://doi.org/10.1007/PL00000611
  23. Kengaku, M. and Okamoto, H. (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121-3130
  24. Koga, C., Adati, N., Nakata, K., Mikoshiba, K., Furuhata, Y., et al. (1999) Characterization of a novel member of the FGF family, XFGF-20, in Xenopus laevis. Biochem. Biophys. Res. Commun. 261, 756-765 https://doi.org/10.1006/bbrc.1999.1039
  25. Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S. E., Economides, A. N., et al. (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713-718 https://doi.org/10.1126/science.8235591
  26. Lee, S. M., Danielian, P. S., Fritzsch, B., and McMahon, A. P. (1997) Evidence that FGF8 signalling from the midbrainhindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959-969
  27. Liu, A., Losos, K., and Joyner, A. L. (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126, 4827-4838
  28. MacArthur, C. A., Lawshe, A., Shankar, D. B., Heikinheimo, M., and Shackleford, G. M. (1995a) FGF-8 isoforms differ in NIH3T3 cell transforming potential. Cell Growth Differ. 6, 817-825
  29. MacArthur, C. A., Lawshe, A., Xu, J., Santos-Ocampo, S., Heikinheimo, M., et al. (1995b) FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121, 3603-3613
  30. Martin, G. R. (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571-1586 https://doi.org/10.1101/gad.12.11.1571
  31. Monsoro-Burq, A. H., Fletcher, R. B., and Harland, R. M. (2003) Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, 3111-3124 https://doi.org/10.1242/dev.00531
  32. Meyers, E. N., Lewandoski, M., and Martin, G. R. (1998) An Fgf8 mutant allelic series generated by Cre- and Flpmediated recombination. Nat. Genet. 18, 136-141 https://doi.org/10.1038/ng0298-136
  33. Nieuwkoop P. D. and Faber J. (1994) Normal table of Xenopus laevis (Daudin), Reprinted Garland Publishing, Inc., New York
  34. Ornitz, D. M. and Itoh, N. (2001) Fibroblast growth factors. Genome Biol. 2, 3005.1-3005.12
  35. Sato, T., Araki, I., and Nakamura, H. (2001) Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128, 2461-2469
  36. Tanaka, A., Miyamoto, K., Minamino, N., Takeda, M., Sato, B., et al. (1992) Cloning and characterization of an androgeninduced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc. Nat. Acad. Sci. USA 89, 8928-8932
  37. Tanaka, A., Miyamoto, K., Matsuo, H., Matsumoto, K., and Yoshida, H. (1995) Human androgen-induced growth factor in prostate and breast cancer cells: its molecular cloning and growth properties. FEBS Lett. 363, 226-230 https://doi.org/10.1016/0014-5793(95)00324-3
  38. Vogel, A., Rodriguez, C., and Izpisua-Belmonte, J. C. (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737-1750
  39. Wall, N. A. and Hogan, B. L. (1995) Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein- 7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech. Dev. 53, 383-392 https://doi.org/10.1016/0925-4773(95)00453-X
  40. Yokoyama, H., Yonei-Tamura, S., Endo, T., Izpisua-Belmonte, J. C., Tamura, K., et al. (2000) Mesenchyme with fgf-10 expression is responsible for regeneration capacity in Xenopus limb buds. Dev. Biol. 219, 18-29 https://doi.org/10.1006/dbio.1999.9587