하천토양에서 갯버들의 생장특성과 질소와 인의 제거효과

Growth Characteristics and Removal Effect of Nitrogen and Phosphorus of Salix gracilistyla Grown in Waterway Soils

  • 서병수 (전북대학교 산림과학부, 농업과학기술연구소) ;
  • 최수민 (전북대학교 산림과학부, 농업과학기술연구소) ;
  • 박종민 (전북대학교 산림과학부, 농업과학기술연구소)
  • Seo, Byung-Soo (Faculty of Forest Science, Chonbuk National University) ;
  • Choi, Su-Min (Faculty of Forest Science, Chonbuk National University) ;
  • Park, Chong-Min (Faculty of Forest Science, Chonbuk National University)
  • 투고 : 2004.08.05
  • 심사 : 2005.03.28
  • 발행 : 2005.03.31

초록

질소와 인의 농도가 다른 만경강 하천토양에 친수성 목본식물인 갯버들을 재배하여 식물체의 생장량과 광합성, 그리고 토양내의 질소와 유효인산$(P_2O_5)$의 함량변화 등을 조사하였다. 만경강 하천토양 내 질소와 유효인산의 함량은 비교적 하류에 위치하면서 일부 축산오수가 유입되고 있는 삼례철교 부근의 하천토양에서 가장 높았다. 하천토양에서 재배된 갯버들은 줄기의 길이생장이 가장 왕성(170-215%)하였고, 다음으로 직경생장이 양호(42.3-79.3%)하였다. 전반적으로 질소의 함량이 높은 하천토양일수록 갯버들의 생장이 더 왕성하였다. 식물체의 광합성량은 질소의 함량이 많은 토양에서 약간 높았고, 8월에 최대치를 나타내었다. 갯버들을 재배함으로써 하천토양에서 질소는 14-15% 정도 제거되었고, 유효인산은 9-11% 정도 제거되었다. 갯버들은 인보다는 질소의 제거에 더 효과적이었으며, 질소와 인산 모두 농도가 높은 토양에서 제거율도 높은 경향을 나타내었다.

This study was carried out to survey the growth and the photosynthesis of Salix gracilistyla, the reduction rate of nitrogen and phosphoric acid by the plant grown in waterway soil. The results were summarized as follows; I. The contents of nitrogen and phosphoric acid at waterway soils of Mangyeong river showed the highest level in the around Samrye railway bridge where was located in the downstream and livestock complex. 2. The Salix gracilistyla which grown in waterway soil showed that the growth of stem length and diameter were 170~215% and 42.3~79.3%, respectively. In addition the growth rate of Salix gracilistyla was increased with increasing nitrogen concentrations in waterway soils. 3. The rate of photosynthesis was high in waterway soil contained high nitrogen and it appeared the highest in August. 4. The nitrogen and phosphoric acid by Salix gracilistyla grown in waterway soil were removed about 14~15% and 9~11 %, respectively. The Salix gracilistyla was effective removing nitrogen more than phosphoric acid.

키워드

과제정보

연구 과제 주관 기관 : 농림기술센타

참고문헌

  1. 김송남 . 오성도 . 최동근. 2002. 저농도 질소시비가 배나무 실생묘의 생육과 수체내 질소함량에 미치는 영향. 전북대 농대논문집 33: 116-123
  2. 김용범 . 임양재. 1990. 한강지천의 수질오염과 식생변화. 한국생태학회지 13 : 297-309
  3. 김윤태. 1999. 수생식물을 이용한 영양염류 제거에 관한 연구. 창원대학교산업대학원 석사학위논문 pp. 11
  4. 김판기 . 김선희 . 이상모 . 조주형 . 이은주. 2002. 김포 수도권 매립지에 식재된 현사시나무의 환경 적응 반응(1). 한국임학회지 91 (1): 79-87
  5. 박성현. 2002. 현대실험계획법. 민영사. 서울. pp. 694
  6. 손기철 . 김미경. 1998. 실내 광, 온도, 절대습도 및 이산화탄소의 변화가 파키라 (Pachira aquatica)의 증산 및 광합성량에 미치는 영향과 통계적 모델링, 한국원예학회지 39(5): 605-609
  7. 서병수 . 최수민 . 박우진 . 박종민. 2004. 만경강 하천토양에서 노랑꽃창포의 생장특성과 질소 . 인 제거효과. 한국환경복원녹화기술학회지 7(5): 57-65
  8. 신정이 . 차영일. 1999. 갯버들(Salix gracilistyla Miq.)의 질소와 인 제거능에 관한 연구. 한국환경복원녹화기술학회 추계학술발표집 p. 41-42
  9. 우수영 . 이동섭 . 김동근 . 김판기. 2001. 생활쓰레기 매립지 침출수가 이태리포플러와 자작나무 묘목에 미치는 영향(II). 한국임학회지 90(1): 55-63
  10. 이욱주. 1999. 수생식물의 수질정화 효과에 관한 연구(꽃창포, 박하. 이삭물수세미, 큰피막이, 부들, 노랑어리꽃, 생이가래에 대하여). 한양대학교 환경대학원 석사 학위논문. pp. 85
  11. 임홍탁. 1991. 호수의 퇴적물에 함유된 인의 존재형태와 용출에 관한 연구. 서울 대학교 대학원 석사학위논문
  12. 전만식 . 김범철. 1998. 부레옥잠의 수중 영양염 제거 잠재력에 관한 고찰. 한국 환경생물학회지 17:117-124
  13. 조강헌. 1992. 팔당호에서 대형 수생식물에 의한 물질생산과 질소와 인의 순환. 서울대 박사학위 논문 pp. 197-206
  14. 함용규. 1996. 수생식물의 중금속 흡수능에 관한 연구. 순천향대학교 석사학위논문. pp. 24-27
  15. Boyd, C.E. 1969. Vascular aquatic plants for mineral nutrient removal from polluted water, Economic Botany 23 : 95-103
  16. Ghosh, D. and S. Sen. 1987. Ecological history of Calcutta's wetland comersion. Environmental conservation 14: 219-226 https://doi.org/10.1017/S0376892900016416
  17. Grant R.R. and R. Patrick 1970. In Two studies of Tinicum Marsh. Tinicum marsh as a water purifier. 105-123. In Two studies of Tinicum Marsh. The Conservation Foundation. Washington, D.C
  18. Kutera, J. and M. Soroko. 1994. The use and treatment of wastewater in willow and poplar plantations. Swedish University of Agricultural Sciences, Department of Ecology and Environmental Research, Section of Short Rotation Forestry. p. 37-47
  19. Nutter, W.L. and J.P. Red. 1986. Future direction: Forest Wastewater application, In Cole D. W., C.L. Henry and W. L. Nutter(eds). The forest alternative for treatments and utilization of municipal and industrial waste. 55-69. University of Washington Press. Seattle
  20. Oharska-Pempkowiak, H. 1994. Removal of nitrogen and phosphorus from municipal wastewater by willow. Swedish University of Agricultural Scicnccs. Department of Ecology and Environmental Research, Section of Short Rotation Forestry. p. 83-90
  21. Page, A.L. (Editor). 1982. Methods of Soil Analysis(Part 2, Chemical and Microbiological Properties Second Edition). Agronomy. Wisconsin USA, pp, 403-430, 595-624
  22. Reddy, K.R. and W.F. Debusk. 1987. Nutrient Storage Capabilities of Aquatic and Wetland Plants, Magnolia Pub., Inc. Orlando, Fla
  23. Rogers H.H. and D. E. Davis 1972. Nutrient Removal by Water hyacinth, Weed Science 20 : 423
  24. SAS Institutes. 1995. SAS Users Guide: Statistics, Version 6,12
  25. Sato H, and Kando T. 1981. Biomass production of water hyacinth and its ability to remove inorganic minerals from water I. Effect of the concentration of culture solution on the rates of plant growth and nutrient uptake. Jpn. J. Eol. 31 : 257-267