Hydorgen Production by Catalytic Decomposition of Propane Over Cabon-Based Catalyst

탄소계 촉매를 이용한 프로판 분해 반응에 의한 수소 생산

  • Yoon, Suk Hoon (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Han, Gi Bo (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Lee, Jong Dae (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Park, No-Kuk (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Ryu, Si Ok (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Lee, Tae Jin (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Yoon, Ki June (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Han, Gui Young (Department of Chemical Engineering, Sungkyunkwan University)
  • 윤석훈 (영남대학교 디스플레이화학공학부, 국가지정연구실) ;
  • 한기보 (영남대학교 디스플레이화학공학부, 국가지정연구실) ;
  • 이종대 (영남대학교 디스플레이화학공학부, 국가지정연구실) ;
  • 박노국 (영남대학교 디스플레이화학공학부, 국가지정연구실) ;
  • 류시옥 (영남대학교 디스플레이화학공학부, 국가지정연구실) ;
  • 이태진 (영남대학교 디스플레이화학공학부, 국가지정연구실) ;
  • 윤기준 (성균관대학교 화학공학과) ;
  • 한귀영 (성균관대학교 화학공학과)
  • Received : 2005.09.08
  • Accepted : 2005.11.22
  • Published : 2005.12.31

Abstract

It is reported that a method for the hydrogen production from the propane decomposition using carbon black as a catalyst is more effective than from the methane decomposition. Since the by-products like CO and $CO_2$ are not produced by the direct decomposition of propane, it is considered as an environmentally sustainable process. In this study, hydrogen was produced by the direct decomposition of propane using either commercial activated carbon or carbon black at atmospheric pressure in the temperature range of $500-1,000^{\circ}C$. Resulting products in our experiment were not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene. Hydrogen yield increased as temperature increased because the amount of those by-products produced in the experiment was inversely proportional to temperature. The achieved hydrogen yield at $750^{\circ}C$ with commercial DCC N330 catalyst was 22.47% in this study.

카본블랙을 이용한 프로판 분해는 메탄보다 분해가 용이하여 효과적인 수소생산방법으로 알려졌다. 특히, 프로판 직접 분해 반응에 의한 수소생산은 CO나 $CO_2$와 같은 부산물이 생성되지 않으므로 환경친화적인 수소 생산기술이다. 본 연구에서는 국내에서 상용화되어 시판되고 있는 활성탄 및 카본블랙을 탄소계 촉매로 사용하여 프로판 직접 분해반응특성을 조사하였다. 프로판의 직접 분해반응은 대기압 하, $500{\sim}1,000^{\circ}C$ 온도영역에서 실험이 수행되었으며, 프로판 분해반응에 의한 생성물로 수소뿐만 아니라 메탄, 에틸렌, 에탄, 프로필렌 등의 부산물의 생성이 확인되었다. 이러한 부산물들은 고온으로 갈수록 줄어들어 상대적으로 수소 수율이 증가함을 알 수 있었다. 다양한 상용촉매를 프로판 분해 반응에 적용하여 본 결과로서 DCC N330을 촉매로 이용하였을 경우, $750^{\circ}C$에서 22.47%의 수소 수율을 얻었다.

Keywords

References

  1. Muradov, No, 'Thermocatalytic $CO_2$-free Production of Hydrogen from Hydrocarbon Fuels;' Proceeding of the DOE Hydrogen Program Reciew, NREL/CP-570-30535(200l)
  2. Muradov, No, 'Thermocatalytic $CO_2$-free Production of Hydro-gen from Hydrocarbon Fuels;' Proceeding of the 2000 Hydrogen Program Review, NREL/CP-570-28890(2000)
  3. Muradov, N., 'C02-Free Production of Hydrogen by Catalytic Pyrolysis of Hydrocarbon Fuel' Energy & Fuels, 12(1), 41-48(1998) https://doi.org/10.1021/ef9701145
  4. Aiello, R, Fiscus, J., Loye, H. and Amiridis, M., 'Hydrogen Production via the Direct Cracking of Methane over NilSi02:Catalyst Deactivation and Regeneration;' Applied Catalysis A:General, 192(2), 227-234(2000) https://doi.org/10.1016/S0926-860X(99)00345-2
  5. Lee, E. K., Lee, S. Y., Han, G Y., Lee, B. K., Lee, T. J., Jun, J. H. and Yoon, K. J., 'Catalytic Decomposition of Methane over Carbon Blacks for $CO_2$-free Hydrogen Production;' Carbon, 42(12-13), 2641-2648(2004)
  6. Kim, M. H., Lee, E. H., Jun, J. H., Lee, S. Y., Han, G Y., Lee, B. K., Lee, T. J. and Yoon, K. J., 'Hydrogen Production by Catalytic Decomposition of Methane over Activated Carbons: Kinetic Study;' International Journal of Hydorgen Energy, 29(2), 187-193 (2004) https://doi.org/10.1016/S0360-3199(03)00111-3
  7. Lee, K. K., Han, G Y., Yoon, K. J. and Lee, B. K., 'Thermocatalytic Hydrogen Production from the Methane in a Fluidized bed with Activated Carbon Catalyst:' Catalysis Today, 93-95, 81-86(2004)
  8. Muradov, N., 'Emission-free Fuel Reformers for Mobile and Portable Fuel Cell Application:' Journal of Power Sources, 118(1-2), 320-324(2003) https://doi.org/10.1016/S0378-7753(03)00054-5
  9. Otsuka, K., Shigeta, Y. and Takenaka, S., 'Catalytic Decomposition of Light Alkanes, Alkenes and Acetylene over $Ni/SiO_2$:' Applied Catalysis A: General, 210(1-2), 371-379(2001) https://doi.org/10.1016/S0926-860X(00)00791-2
  10. Otsuka, K., Shigeta, Y. and Takenaka, S.,' Production of Hydrogen from Gasoline range Alkanes with Reduced $CO_2$ Emission:' Intermational Journal of Hydrogen Energy, 27(1), 11-18(2002) https://doi.org/10.1016/S0360-3199(01)00087-8