Follicular Lactate Dehydrogenase Activity and Steroid Concentrations in the Immature Gilt Ovary

미성숙 돼지 난포 내 Lactate Dehydrogenase 활성도 및 동일 난포액 내 스테로이드호르몬의 농도변화

  • Lee, Chang Joo (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Yoon, Yong-Dal (Department of Life Science, College of Natural Sciences, Hanyang University)
  • 이창주 (한양대학교 자연과학대학 생명과학과) ;
  • 윤용달 (한양대학교 자연과학대학 생명과학과)
  • Published : 2005.09.30

Abstract

연구목적: 난포가 폐쇄되는 동안의 생화학적 변화를 규명하기 위하여 미성숙 돼지의 정상 및 폐쇄 난포 내 lactate dehydrogenase (LDH) 활성도 변화 및 동일 난포액 내 스테로이드호르몬의 농도변화를 알아보기 위하여 본 연구를 시행하였다. 재료 및 방법: 난포액 (FF), 과립세포 (GC), 협막세포 (TC) 내 LDH의 활성도를 측정하였으며, 난포액 내 progesterone ($P_4$), testosterone (T), estradiol ($E_2$)의 농도변화를 방사면역측정법으로 정량하였다. 결 과: 정상 및 폐쇄 난포에서 $P_4$의 농도변화를 보이지 않았다. 그러나 폐쇄 난포액 내 T의 농도($3.85{\pm}1.50ng/ml$)는 정상 난포 ($1.29{\pm}0.54ng/ml$)에 비해 현저히 높았으며 정상 난포 내 $E_2$의 농도 ($43.29{\pm}19.51ng/ml$) 는 폐쇄 난포 ($18.82{\pm}7.27ng/ml$)에 비해 현저히 높은 것으로 나타났다. 정상 난포액 내 $P_4$의 농도는 난포의 크기에 정의 상관관계 (r=0.75)를 보였다. 정상 난포 내 T:$P_4$의 비율 ($8.14{\pm}3.35$)은 폐쇄 난포 ($1.39{\pm}0.60$)에 비해 현저히 높았으며, 정상 TC ($433.63{\pm}102.40{\mu}U/{\mu}g$ DNA) 및 FF ($246.86{\pm}58.96{\mu}U/{\mu}l$) 내 LDH 활성도는 폐쇄 난포 (각각 $83.7{\pm}10.5$$38.71{\pm}9.00$)에 비해 현저히 높게 나타났다. 정상 난포의 GC 및 FF 내 LDH 활성도는 $E_2$의 농도와 부의 상관관계를 보였지만, 폐쇄 난포의 TC 내 LDH 활성도는 $P_4$, T, $E_2$의 농도에 대해 정의 상관관계를 나타내었다. 결 론: 본 실험의 결과, 미성숙 돼지 난포의 폐쇄는 TC 내 LDH 활성도 감소와 밀접한 관계를 갖는 것으로 사료된다.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Webb R, Nicholas B, Gong JS, Campbell BK, Gutierrez CG, Garverick HA, Armstrong DG. Mechanisms regulating follicular development and selection of the dominant follicle. J Reprod Fertil (Suppl.) 2003; 61: 71-90
  2. Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol 1991; 124: 43-101 https://doi.org/10.1016/S0074-7696(08)61524-7
  3. McNatty KP, Baird DT. Relationship between folliclestimulating hormone, androstenedione and oestradiol in human follicular fluid. J Endocrinol 1978; 76: 527-31 https://doi.org/10.1677/joe.0.0760527
  4. Ledwitz-Rigby F, Rigby BW. The actions of follicular fluid factors on steroidogenesis by cultured ovarian granulosa cells. J Steroid Biochem 1983; 19: 127-31
  5. Yoon YD, Lee CJ, Do BR, Kim JH, Kim MK. Biochemical studies on the metabolism of follicular maturation (II). Protein composition and steroid concentration in individually isolated medium-sized follicular fluid of pig ovary. Korean J Zool 1990; 33: 63-9
  6. Greenwald GS, Terranova P. Follicular selection and its control. In: The Physiology of Reproduction (Knobil E, Neill J, editors.). New York: Raven Press; 1988. p. 387 -445
  7. Harman SM, Louvet JP, Ross GT. Interaction of estrogen and gonadotrophins on follicular atresia. Endocrinology 1975; 96: 1145-52 https://doi.org/10.1210/endo-96-5-1145
  8. Haney AF, Schomberg DW. Steroidal modulation of progesterone secretion by granulosa cells from large porcine follicles: a role for androgens and estrogens in controlling steroidogenesis. Biol Reprod 1978; 19: 242-8 https://doi.org/10.1095/biolreprod19.2.242
  9. Hillier SG, Ross GT. Effects of exogenous testosterone on ovarian weight, follicular morphology and intraovarian progesterone concentration in estrogen-primed hypophysectomized immature female rats. Biol Reprod 1979; 20: 261-8 https://doi.org/10.1095/biolreprod20.2.261
  10. Tsafriri A, Braw RH. Experimental approaches to atresia in mammals. Oxf Rev Reprod Biol 1984; 6: 226-65
  11. Hillier SG, Zeleznik AJ, Ross GT. Independence of steroidogenic capacity and luteinizing hormone receptor induction in developing granulosa cells. Endocrinology 1978; 102: 937-46 https://doi.org/10.1210/endo-102-3-937
  12. Carson RS, Findlay JK, Clarke IJ, Burger HG. Estradiol, testosterone, and androstenedione in ovine follicular fluid during growth and atresia of ovarian follicles. Biol Reprod 1981; 24: 105-13 https://doi.org/10.1095/biolreprod24.1.105
  13. Peters H, Byskov AG, Himelstein-Braw R, Faber M. Follicular growth: the basic event in the mouse and human ovary. J Reprod Fertil 1975; 45: 559-66 https://doi.org/10.1530/jrf.0.0450559
  14. Hsueh AJW, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 1994; 15: 707-24
  15. Tilly JL, Tilly KI, Kenton ML, Johnson AL. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropinmediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology 1995; 136: 232-41 https://doi.org/10.1210/en.136.1.232
  16. Johnson AL, Bridgham JT, Witty Jp, Tilly JL. Susceptibility of avian ovarian granulosa cells to apoptosis is dependent upon stage of follicle development and is related to endogenous levels of bcl-xlong gene expression. Endocrinology 1996; 137: 2059-66 https://doi.org/10.1210/en.137.5.2059
  17. Lee CJ, Park HH, Do BR, Yoon YD, Kim JK. Natural and radiation-induced degeneration of primordial and primary follicles in mouse ovary, Anim Reprod Sci 2000; 28: 109-17
  18. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996; 17: 121-55
  19. Guraya SS. Follicular atresia. In: Biology of Ovarian Follicles in Mammals (Guraya SS, editor). SpringerVerlag; 1985. p227-75
  20. Breitenecker G, Friedrich F, Kemeter P. Further investigations on the maturation and degeneration of human ovarian follicles and their oocytes. Fertil Steril 1978; 29: 336-41
  21. Caucig H, Friedrich F, Breitenecker G, Golob E. Enzyme activity in the fluid of the human ovarian follicle. Gynecol Invest 1972; 3: 215-20 https://doi.org/10.1159/000301777
  22. Soliman KF, Walker CA. Ovarian LDH activity in gonadotropin-treated immature rats. Experientia 1976; 32: 1612-3 https://doi.org/10.1007/BF01924483
  23. Wise T. Biochemical analysis of bovine follicular fluid: albumin, total protein, lysosomal enzymes, ions, steroids and ascorbic acid content in relation to follicular size, rank, atresia classification and day of estrous cycle. J Anim Sci 1987; 64: 1153-69
  24. Westhof G, Westhof KF, Braendle WL, diZerega GS. Differential steroid and gonadotropin response by individual tertiary porcine follicles in vitro. Possible physiological role of atretic follicles. Biol Reprod 1991; 44: 461-8 https://doi.org/10.1095/biolreprod44.3.461
  25. Harris DA. Spectrophotometric assay. In: Spectrophotometry and Spectrofluorimetry (Harris DA, Bashford CL, Eds.). Oxford, IRL Press; 1987. p64-5.
  26. Pesce AJ. Lactate dehydrogenase. In: Methods in Clinical Chemistry (Pesce, AJ, Kaplan LA, Eds.). The C. V. Mosby Comany, St. Louis; 1987. p903-6
  27. Leung PC, Armstrong DT. Interactions of steroids and gonadotropins in the control of steroidogenesis in the ovarian follicle. Annu Rev Physiol 1980; 42:71-82 https://doi.org/10.1146/annurev.ph.42.030180.000443
  28. Gower DB, Cooke GM. Regulation of steroid-transforming enzymes by endogenous steroids. J Steroid Biochem 1983; 19: 1527-56 https://doi.org/10.1016/0022-4731(83)91130-5
  29. Maxson WS, Haney AF, Schomberg DW. Steroidogenesis in porcine atretic follicles: loss of aromatase activity in isolated granulosa and theca. Biol Reprod 1985; 33: 495-501 https://doi.org/10.1095/biolreprod33.2.495
  30. Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil (Suppl) 1985; 33: 1-19
  31. Ireland JJ, Roche JF. Development of nonovulatory antral follicles in heifers: changes in steroids in follicular fluid and receptors for gonadotropins. Endocrinology 1983; 112: 150-6 https://doi.org/10.1210/endo-112-1-150
  32. Hillier SG. Intrafollicular paracrine function of ovarian androgen. J Steroid Biochem 1987; 27: 351-7 https://doi.org/10.1016/0022-4731(87)90327-X
  33. Haney AF, Schomberg DW. Estrogen and progesterone production by developing porcine follicles in vitro: evidence for estrogen formation by theca. Endocrinology 1981; 109: 971-7 https://doi.org/10.1210/endo-109-3-971
  34. Tonetta SA, diZerega GS. Paracrine regulation of follicular maturation in primates. Clin Endocrinol Metab 1986; 15: 135-56 https://doi.org/10.1016/S0300-595X(86)80046-9
  35. Guthrie HD, Cooper BS. Follicular atresia, follicular fluid hormones, and circulating hormones during the midluteal phase of the estrous cycle in pigs. Biol Reprod 1996; 55: 543-7 https://doi.org/10.1095/biolreprod55.3.543
  36. McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab 1979; 49: 851-60 https://doi.org/10.1210/jcem-49-6-851
  37. Nicosia SV. In vitro studies of follicular morphogenesis, development and atresia. In: Endocrine Physiopathology of the Ovary (Tozzini RI, Reeves G, Pineda RL, Eds.). Elsevier/North-Holland Biomedical Press; 1980. p43-62
  38. Shaha C, Greenwald GS. Autoradiographic analysis of changes in ovarian binding of FSH and hCG during induced follicular atresia in the hamster. J Reprod Fertil 1982; 66: 197-201 https://doi.org/10.1530/jrf.0.0660197